HPC Software for Medical Imaging

用于医学成像的 HPC 软件

基本信息

  • 批准号:
    EP/F01144X/1
  • 负责人:
  • 金额:
    $ 22.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

The performance of computers with a single core , i.e. a traditional CPU, is not expected to continue increasing at the same rate as in the past. To boost overall computer performance, manufacturers now provide multi-core processors. For the development of faster software, programmers are going to be forced to make use of multi-core technology. The power of the mass market means that there are now two relatively cheap hardware configurations each with about 100 cores. These are computer clusters where PCs are networked together, and, graphics cards. The performance of graphics cards has recently been outstripping that of CPUs. Graphics cards have the added advantages of being cheap and self-contained.In medical imaging, the alignment or registration of images is an important step in clinical image analysis. In diseases such as Alzheimer's or other forms of dementia, the brain shrinks over an extended period of time. Over shorter time scales these changes are not obvious when looking at two images side-by-side. Registration aligns images by accounting for differences in the patient position and scanner variations. It also provides a measure of local changes in tissue volume. These algorithms take hours to run, longer than the time a patient is in a scanner. If the data processing could be complete with a few minutes, more detailed follow-up scanning could be possible.Registration is also used to combine large numbers of datasets to determine normal and abnormal anatomy. This is often called atlas building. The creation of atlases needs large amounts of memory and this currently limits the number of datasets that can be included. Building an atlas is well suited to a computer cluster. Once created, if an atlas could be registered with a patient's image whilst they were still in the scanner, it could provide information on-the-spot about abnormal anatomy in the patient. Some of the newer Magnetic Resonance Imaging (MRI) techniques such as diffusion weighted imaging and functional MRI provide detailed information about nerve connections in the brain or show up thoughts . The processing of this data requires images to be in alignment, again, if this could be complete in minutes, diagnosis would be enhanced. This proposal aims to develop algorithms using high-level languages for use on graphics cards or computer clusters. Much of the previous work in this area has required specialised knowledge of the hardware and considerable programming skills. By using the newer high-level languages, we will be able to concentrate more on the applications and problems than the details of the hardware and software architecture. This lends itself to high-quality code because it can be read easily by others, checked on other systems and integrates with debugging and visualisation tools.We aim to demonstrate and evaluate registration algorithms in clinical applications that are currently not feasible due to the data processing being too slow or memory-intensive.
单核计算机(即传统CPU)的性能预计不会像过去那样继续以相同的速度增长。为了提高计算机的整体性能,制造商现在提供多核处理器。为了开发更快的软件,程序员将被迫使用多核技术。大众市场的力量意味着现在有两种相对便宜的硬件配置,每种配置大约有100个核心。这些是计算机集群,其中PC联网在一起,和图形卡。显卡的性能最近已经超过了CPU。在医学成像中,图像的对齐或配准是临床图像分析的重要步骤。在阿尔茨海默氏症或其他形式的痴呆症等疾病中,大脑会在很长一段时间内萎缩。在较短的时间尺度上,当并排观察两幅图像时,这些变化并不明显。配准通过考虑患者位置和扫描仪变化的差异来对齐图像。它还提供了组织体积局部变化的测量。这些算法需要数小时才能运行,比病人在扫描仪中的时间还要长。如果数据处理可以在几分钟内完成,则可以进行更详细的后续扫描。配准还用于结合联合收割机大量数据集以确定正常和异常解剖结构。这通常被称为地图集建设。创建地图集需要大量内存,这目前限制了可以包含的数据集的数量。建立地图集非常适合计算机集群。一旦创建,如果图谱可以与患者的图像配准,而他们仍然在扫描仪中,它可以提供关于患者异常解剖结构的现场信息。一些较新的磁共振成像(MRI)技术,如弥散加权成像和功能性MRI,提供了有关大脑神经连接的详细信息或显示了想法。这些数据的处理需要图像对齐,同样,如果这可以在几分钟内完成,诊断将得到增强。该提案旨在开发使用高级语言的算法,用于图形卡或计算机集群。以前在这方面的许多工作都需要硬件的专业知识和相当的编程技能。通过使用更新的高级语言,我们将能够更多地关注应用程序和问题,而不是硬件和软件架构的细节。这有助于高质量的代码,因为它可以很容易地被其他人阅读,在其他系统上检查,并与调试和可视化工具集成。我们的目标是演示和评估注册算法在临床应用中,目前是不可行的,由于数据处理速度太慢或内存密集型。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling anisotropic viscoelasticity for real-time soft tissue simulation.
建模各向异性粘弹性以进行实时软组织模拟。
Commodity Graphics Cards for Image Registration, Biomechanical Modelling and Cardiac Imaging
用于图像配准、生物力学建模和心脏成像的商品显卡
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atkinson D
  • 通讯作者:
    Atkinson D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Atkinson其他文献

Small-angle x-ray scattering of human serum high-density lipoproteins.
人血清高密度脂蛋白的小角 X 射线散射。
Losing energy in classical, relativistic and quantum mechanics
  • DOI:
    10.1016/j.shpsb.2006.06.002
  • 发表时间:
    2007-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Atkinson
  • 通讯作者:
    David Atkinson
“How long do I have, and what should I expect?” Prognostication and care planning in cognitive loss and dementia
  • DOI:
    10.1016/j.jagp.2022.01.253
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Atkinson;Kayla Murphy;Jamie Starks
  • 通讯作者:
    Jamie Starks
emWhere is VALDO?/em VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021
瓦尔道在哪里?/em 血管病变检测与分割挑战赛在 MICCAI 2021
  • DOI:
    10.1016/j.media.2023.103029
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    11.800
  • 作者:
    Carole H. Sudre;Kimberlin Van Wijnen;Florian Dubost;Hieab Adams;David Atkinson;Frederik Barkhof;Mahlet A. Birhanu;Esther E. Bron;Robin Camarasa;Nish Chaturvedi;Yuan Chen;Zihao Chen;Shuai Chen;Qi Dou;Tavia Evans;Ivan Ezhov;Haojun Gao;Marta Girones Sanguesa;Juan Domingo Gispert;Beatriz Gomez Anson;Marleen de Bruijne
  • 通讯作者:
    Marleen de Bruijne
When Are Thought Experiments Poor Ones?
  • DOI:
    10.1023/b:jgps.0000005164.26228.f7
  • 发表时间:
    2003-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Jeanne Peijnenburg;David Atkinson
  • 通讯作者:
    David Atkinson

David Atkinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Atkinson', 18)}}的其他基金

Detection of loss of grid event in distributed generation systems using pattern recognition
使用模式识别检测分布式发电系统中的电网丢失事件
  • 批准号:
    EP/J017116/1
  • 财政年份:
    2012
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Research Grant
Towards Reliable Diffusion MRI of Moving Organs
实现移动器官的可靠扩散 MRI
  • 批准号:
    EP/I018700/1
  • 财政年份:
    2011
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Research Grant
The path of most Resistance: the intimate geographies of landscape for World War II Partisans in Northern Italy
最抵抗的道路:意大利北部二战游击队的亲密地理景观
  • 批准号:
    AH/H039686/1
  • 财政年份:
    2010
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Research Grant
PERFORMANCE COMPARISON OF TRADITIONAL AND EMERGING DOUBLY-FED GENERATOR TOPOLOGIES FOR GRID-CONNECTED WIND POWER APPLICATIONS
并网风电应用的传统和新兴双馈发电机拓扑的性能比较
  • 批准号:
    EP/F061714/1
  • 财政年份:
    2008
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Research Grant
Time-resolved whole-heart cardiac imaging using highly parallel magnetic resonance
使用高度并行磁共振进行时间分辨全心心脏成像
  • 批准号:
    EP/E001564/1
  • 财政年份:
    2007
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Research Grant

相似海外基金

Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
  • 批准号:
    10760401
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
NSF FDA/SiR: Development of eeDAP microscopy platform software, validation data, and statistical methods to assess performance of candidate Software as a Medical Device (SaMD)
NSF FDA/SiR:开发 eeDAP 显微镜平台软件、验证数据和统计方法,以评估候选软件作为医疗设备 (SaMD) 的性能
  • 批准号:
    2326317
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Standard Grant
Stepping up the game: scale up and international expansion for British AI medical software
加速游戏:英国人工智能医疗软件的规模化和国际扩张
  • 批准号:
    10057456
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Grant for R&D
Quantitative Modeling Software with Applications to Medical Decision Making
定量建模软件在医疗决策中的应用
  • 批准号:
    10823037
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
PreSize Diagnostic medical device software for increased precision in advance selection of best surgical scenario for every patient at point of diagnosis
PreSize 诊断医疗设备软件可提高精确度,在诊断时为每位患者提前选择最佳手术方案
  • 批准号:
    10073884
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Collaborative R&D
PreSize Net medical device software for realistic surgery planning: next-generation scalable technology for selecting the best surgical scenario for every patient
用于现实手术规划的 PreSize Net 医疗设备软件:下一代可扩展技术,可为每位患者选择最佳手术方案
  • 批准号:
    10055877
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Collaborative R&D
NSF/FDA: Towards an active surveillance framework to detect AI/ML-enabled Software as a Medical Device (SaMD) data and performance drift in clinical flow
NSF/FDA:建立主动监测框架,以检测支持 AI/ML 的软件即医疗设备 (SaMD) 数据和临床流程中的性能漂移
  • 批准号:
    2326034
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Standard Grant
TOPIC 454 - SOFTWARE TO EVALUATE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING MEDICAL DEVICES IN ONCOLOGY SETTINGS
主题 454 - 在肿瘤学环境中评估人工智能/机器学习医疗设备的软件
  • 批准号:
    10932590
  • 财政年份:
    2023
  • 资助金额:
    $ 22.13万
  • 项目类别:
SBIR Phase I: AI-assisted software for fast labeling of medical tomographic images
SBIR 第一阶段:用于快速标记医学断层扫描图像的人工智能辅助软件
  • 批准号:
    2136669
  • 财政年份:
    2022
  • 资助金额:
    $ 22.13万
  • 项目类别:
    Standard Grant
Personal Health Information Software Platform - Data Exposure and Referential Integrity Investigations for Electronic Medical Record Integration Development for Seamless Hospital Use
个人健康信息软件平台 - 电子病历集成开发的数据暴露和参照完整性调查,供医院无缝使用
  • 批准号:
    CCARD-2022-00063
  • 财政年份:
    2022
  • 资助金额:
    $ 22.13万
  • 项目类别:
    CCI Applied Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了