Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
基本信息
- 批准号:10760401
- 负责人:
- 金额:$ 190.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsArtificial IntelligenceAwardBlindnessBlood VesselsCaringCase StudyChildChildhoodClassificationClinicalClinical ResearchCodeCollaborationsComputer softwareCountryCustomDataData Management ResourcesDevicesDiagnosisDiagnosticDiseaseDropoutEarly DiagnosisEarly treatmentEnsureEyeFundingFundus photographyGoalsHealthImageIndiaInfrastructureInternationalInvestmentsManufacturerMarketingMedicalMedical DeviceMedical ImagingMissionOregonOutputPaperPerformancePhasePrivatizationProcessProviderReaderReference StandardsResearchResourcesRetinopathy of PrematurityScienceServicesSeveritiesSmall Business Innovation Research GrantSpecificitySpeedStandardizationSystemTechnologyTelemedicineTestingTrainingUnited States Food and Drug AdministrationUniversitiesUpdateValidationVisionWorkaccurate diagnosisartificial intelligence algorithmblindclinical diagnosiscloud baseddesigndetection sensitivitydiagnosis standarddiagnostic tooldigitaldisease classificationdisease diagnosisexpedited reviewfundus imagingimage processingimprovedimproved outcomelow and middle-income countriesmedically underservedmeetingsneonatal carepreventprimary outcomeretinal imagingscreeningsecondary outcomesegmentation algorithmsoftware developmenttransfer learningunderserved area
项目摘要
The purpose of this application is to perform the necessary clinical studies to seek regulatory approval for an
artificial intelligence (AI) software as medical device (SaMD) for retinopathy of prematurity (ROP) diagnosis.
ROP is a leading cause of childhood blindness worldwide, with approximately 50,000 babies going blind
annually, most of which is preventable with accurate and timely diagnosis. The i-ROP DL algorithm was
developed by the i-ROP research consortium and has been shown to provide expert-level diagnosis of plus
disease, a component of severe ROP, based on images from the Retcam (Natus, Middleton, WI) digital fundus
camera. The output is a vascular severity score (VSS) that corresponds to spectrum of plus disease, as defined
by the International Classification of ROP, and has been endorsed by the Food & Drug Administration (FDA) as
an appropriate output for an ROP SaMD. If incorporated into a clinical workflow, this technology could provide
automated, immediate, expert-level diagnosis of ROP to the bedside, solving one of the key gaps in care that
results in preventable blindness worldwide. The first aim of this project is to update and retrain the i-ROP DL
algorithm to improve speed and repeatability for clinical use, finalize the image quality and pre-processing
pipeline, and integrate it into the iTeleGEN data management system, an ROP telemedicine software platform.
The second aim is to perform the necessary clinical studies for the two proposed indications for use (IFU): The
first IFU will be as an assistive diagnostic study to improve the clinical diagnosis of plus disease with regulatory
approval based on a multi-reader multi-case study with a primary outcome of improved diagnosis of plus disease,
based on a five expert reference standard diagnosis, with the use of the VSS. The second IFU will be for
autonomous ROP screening for more than mild ROP (MTMROP, defined as type 2 or worse according to the
Early Treatment for ROP study definition). The pivotal study will have a primary outcome of 85% sensitivity and
85% specificity for the diagnosis of MTMROP, with a secondary outcome of greater than 95% sensitivity for
detection of treatment-requiring ROP. The third aim of the proposal is to validate the i-ROP DL algorithm on a
digital fundus camera made by Forus Health (Bengaluru, India), a digital eye care company, with ROP camera
distribution in more than 20 countries. If successful, then once FDA approval is obtained on the Retcam it may
be extended through a 510K process to a camera that is more affordable than the Retcam and widely available
in low- and middle-income countries. This work will be done by Siloam Vision, a company started by two of the
inventors of the i-ROP DL algorithm, in conjunction with Oregon Health & Science University. At the end of the
study period, the goal will be to have the necessary data to support FDA approval of the i-ROP DL algorithm for
two IFUs on two digital fundus cameras and being one step closer to bringing this technology to the bedside to
reduce the number of babies going blind from ROP worldwide.
本申请的目的是进行必要的临床研究,以寻求监管部门的批准
人工智能 (AI) 软件作为医疗设备 (SaMD),用于诊断早产儿视网膜病变 (ROP)。
ROP 是全球儿童失明的主要原因,约有 50,000 名婴儿失明
每年,其中大部分是可以通过准确和及时的诊断来预防的。 i-ROP DL 算法是
由 i-ROP 研究联盟开发,已被证明可以提供专家级的 plus 诊断
疾病,严重 ROP 的一个组成部分,基于 Retcam(Natus,米德尔顿,威斯康星州)数字眼底图像
相机。输出是血管严重程度评分 (VSS),对应于附加疾病谱,如定义
符合ROP国际分类标准,并获得美国食品药品监督管理局(FDA)认可为
ROP SaMD 的适当输出。如果纳入临床工作流程,该技术可以提供
床边自动、即时、专家级的 ROP 诊断,解决了护理中的关键差距之一
导致全世界可预防的失明。该项目的首要目标是更新和重新训练 i-ROP DL
算法提高临床使用的速度和可重复性,最终确定图像质量和预处理
管道,并将其集成到 iTeleGEN 数据管理系统(ROP 远程医疗软件平台)中。
第二个目标是针对两个拟议的使用适应症(IFU)进行必要的临床研究:
第一个 IFU 将作为一项辅助诊断研究,通过监管改善 + 疾病的临床诊断
批准基于多读者多案例研究,主要结果是改善了附加疾病的诊断,
基于五位专家的参考标准诊断,并使用 VSS。第二个 IFU 将用于
针对超过轻度 ROP 的自主 ROP 筛查(MTMROP,根据
ROP 研究定义的早期治疗)。关键研究的主要结果敏感性为 85%
MTMROP 诊断的特异性为 85%,次要结果的敏感性大于 95%
检测需要治疗的 ROP。该提案的第三个目标是在
由数字眼保健公司 Forus Health(印度班加罗尔)制造的数字眼底相机,配有 ROP 相机
分布于20多个国家。如果成功,那么一旦 Retcam 获得 FDA 批准,它可能会
通过 510K 流程扩展到比 Retcam 更实惠且广泛使用的相机
在低收入和中等收入国家。这项工作将由 Siloam Vision 完成,这是一家由两位创始人创办的公司
i-ROP DL 算法的发明者,与俄勒冈健康与科学大学合作。结束时
研究期间,目标是获得必要的数据来支持 FDA 批准 i-ROP DL 算法
两个数字眼底相机上的两个 IFU,距离将这项技术应用于临床又近了一步
减少全球因 ROP 失明的婴儿数量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Peter Campbell其他文献
Influence of serial retinal images on the diagnosis and management of retinopathy of prematurity (ROP)
- DOI:
10.1016/j.jaapos.2018.07.216 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Shin Hae Park;Kai Kang;Sang Jin Kim;Karyn Jonas;Susan Ostmo;John Peter Campbell;Michael F. Chiang;R.V. Paul Chan - 通讯作者:
R.V. Paul Chan
John Peter Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Peter Campbell', 18)}}的其他基金
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10612906 - 财政年份:2020
- 资助金额:
$ 190.71万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10404639 - 财政年份:2020
- 资助金额:
$ 190.71万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10198930 - 财政年份:2020
- 资助金额:
$ 190.71万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10431850 - 财政年份:2010
- 资助金额:
$ 190.71万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10620354 - 财政年份:2010
- 资助金额:
$ 190.71万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10206145 - 财政年份:2010
- 资助金额:
$ 190.71万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
9974137 - 财政年份:2010
- 资助金额:
$ 190.71万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 190.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




