Actively manipulating electronic excitations in nanocrystals

主动操纵纳米晶体中的电子激发

基本信息

  • 批准号:
    EP/F013876/1
  • 负责人:
  • 金额:
    $ 46.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Colloidal nanocrystals made of semiconductor materials resemble fluorescent beads that are only a few nanometres in diameter. Their optical emission properties can be tuned from ultraviolet to infrared wavelengths by suitably choosing the material and adjusting their size and shape. To date, nanocrystals have been exploited in areas ranging from genomic and proteomic bio-assays, cell-staining and high-throughput screening, where they serve as fluorescence markers and more applications have been envisaged in LEDs, lasers, optical switches, photovoltaics, data storage devices, catalysis, drug delivery and other biomedical assays. Compared to self-assembled quantum dots made by molecular beam epitaxy, colloidal nanocrystals can be produced by comparatively simple and inexpensive solution methods, and are freely suspended in a solvent or matrix, while retaining a high optical and electronic stability. The precisely controlled size and shape of nanocrystals, such as in quantum dots, rods or even tetrapods, renders them promising building blocks for nanoscience and nanotechnology. Furthermore, shape control in the synthesis of colloidal nanocrystals offers unprecedented abilities to tune the interaction of solid state quantum structures with the environment, opening up the possibility of performing nanoscale manipulations of the optical and electronic properties. This 'First Grant' proposal aims for key experimental studies on the fundamental properties of colloidal nanocrystals. The overall plan is to develop novel applications based on the active manipulation of the optoelectronic properties of nanocrystals and on self-assembly methods for their alignment in large array device configurations. The ultimate applications range from electric-field nanosensors, single photon tunable sources to optical memory elements and all optical parallel processing.
由半导体材料制成的胶体纳米晶体类似于直径只有几纳米的荧光珠。通过适当选择材料并调整其尺寸和形状,可以将其光发射特性从紫外线波长调节到红外线波长。迄今为止,纳米晶体已被应用于基因组和蛋白质组生物测定、细胞染色和高通量筛选等领域,它们用作荧光标记,并且在 LED、激光器、光开关、光伏、数据存储设备、催化、药物输送和其他生物医学测定中预计会有更多应用。与分子束外延制备的自组装量子点相比,胶体纳米晶体可以通过相对简单且廉价的溶液方法制备,并且自由悬浮在溶剂或基质中,同时保持较高的光学和电子稳定性。精确控制的纳米晶体(例如量子点、棒甚至四足体)的尺寸和形状使它们成为纳米科学和纳米技术有前景的构建模块。此外,胶体纳米晶体合成中的形状控制提供了前所未有的能力来调节固态量子结构与环境的相互作用,从而开启了对光学和电子特性进行纳米级操纵的可能性。这项“首次拨款”提案旨在对胶体纳米晶体的基本特性进行关键实验研究。总体计划是开发基于纳米晶体光电特性的主动操纵和在大型阵列器件配置中对齐的自组装方法的新颖应用。最终应用范围从电场纳米传感器、单光子可调源到光学存储元件和所有光学并行处理。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detection of ultra-low refractive index variations with colloidal nanoprobes
使用胶体纳米探针检测超低折射率变化
  • DOI:
    10.1016/j.snb.2012.04.053
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andreakou P
  • 通讯作者:
    Andreakou P
Colloidal nanoprobes for the optical detection of ethanol
用于乙醇光学检测的胶体纳米探针
  • DOI:
    10.1109/cleoe.2011.5943245
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andreakou P
  • 通讯作者:
    Andreakou P
Spectroscopic evidence of resonance energy transfer mechanism from PbS QDs to bulk silicon
从 PbS 量子点到块体硅的共振能量转移机制的光谱证据
  • DOI:
    10.1051/epjconf/20135401017
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andreakou P
  • 通讯作者:
    Andreakou P
Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics
从 PbS 胶体量子点到体硅的共振能量转移:混合光伏之路
  • DOI:
    10.1117/12.908357
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andreakou P
  • 通讯作者:
    Andreakou P
New light from hybrid inorganic-organic emitters
  • DOI:
    10.1088/0022-3727/41/9/094006
  • 发表时间:
    2008-05-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Belton, C. R.;Itskos, G.;Bradley, D. D. C.
  • 通讯作者:
    Bradley, D. D. C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavlos Lagoudakis其他文献

Exciton-mediated superconductivity
激子介导的超导性
  • DOI:
    10.1038/nmat4646
  • 发表时间:
    2016-05-24
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Alexey Kavokin;Pavlos Lagoudakis
  • 通讯作者:
    Pavlos Lagoudakis
Going soft
变得软弱
  • DOI:
    10.1038/nmat3897
  • 发表时间:
    2014-02-20
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Pavlos Lagoudakis
  • 通讯作者:
    Pavlos Lagoudakis

Pavlos Lagoudakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavlos Lagoudakis', 18)}}的其他基金

Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
  • 批准号:
    EP/Y021789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Research Grant
Hybrid Polaritonics
混合极化激元
  • 批准号:
    EP/M025330/1
  • 财政年份:
    2015
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Research Grant
Engineering polariton non-linearity in organic and hybrid-semiconductor microcavities
有机和混合半导体微腔中的工程极化子非线性
  • 批准号:
    EP/G063494/1
  • 财政年份:
    2010
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Research Grant
Spin currents and superfluidity of microcavity polaritons
微腔极化子的自旋电流和超流性
  • 批准号:
    EP/F026455/1
  • 财政年份:
    2008
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Continuing Grant
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Research Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400352
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Standard Grant
Characterising and Manipulating Triplet Interactions
表征和操纵三重态相互作用
  • 批准号:
    FT230100002
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    ARC Future Fellowships
Understanding and manipulating how Trypanosoma cruzi infects its triatomine insect hosts
了解和操纵克氏锥虫如何感染其锥蝽昆虫宿主
  • 批准号:
    BB/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Research Grant
Manipulating sex determination pathways for pest control
操纵性别决定途径以控制害虫
  • 批准号:
    2869559
  • 财政年份:
    2023
  • 资助金额:
    $ 46.02万
  • 项目类别:
    Studentship
TriMED: Measuring, Modeling and Manipulating Excitability and Disease
TriMED:测量、建模和操纵兴奋性和疾病
  • 批准号:
    10627404
  • 财政年份:
    2023
  • 资助金额:
    $ 46.02万
  • 项目类别:
Manipulating normal estrogen physiology as a therapeutic approach in cancer
操纵正常雌激素生理学作为癌症的治疗方法
  • 批准号:
    10561945
  • 财政年份:
    2023
  • 资助金额:
    $ 46.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了