Operational Refinement of Computation for Multimedia Coding Systems

多媒体编码系统计算的操作细化

基本信息

  • 批准号:
    EP/F020015/1
  • 负责人:
  • 金额:
    $ 29.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Multimedia coding systems today cannot provide seamless quality degradation under degraded system resources. For example, if one watches a video on a portable video player, or is in the middle of a very important phone call, and this is draining the system resources (battery), current systems do not allow for seamless trade-offs in visual (audio) quality vs battery life (computation). Today the user is practically facing the on/off situation of the digital world, while one would strongly opt for an analogue world, where energy or computational resources (complexity) are traded off with multimedia quality (e.g. visual or audible distortion).We propose to fundamentally alter the way conventional multimedia coding algorithms are computed based on a new paradigm that we call Operational Refinement of Computation for Multimedia Coding Systems . The key principle is based on altering the realization of multimedia coding algorithms to enable the new principle of incremental refinement of computation: under a refinement of the multimedia information (e.g. images/video/audio), the algorithm computation refines the previously-computed result thereby leading to incremental computation of the output. The incremental processing or reconstruction of the input/output multimedia signals enables three key advantages in comparison to existing systems. Firstly, complexity-distortion trade-offs can be formulated since every refinement layer improves upon the quality of the output result (reduces distortion) at the cost of additional complexity. Secondly, each refinement input/output layer typically consists of data with limited dynamic-range (e.g. single-bit precision data). Hence, the complexity of the processing tasks can be modelled more accurately in function of the source statistics. Thirdly, each refinement layer can be scheduled in a different part of the implementation architecture and the computation of all layers can be parallelized. This is expected to increase the execution speed and hardware utilization significantly.This proposal comes at an excellent time. There has been a flurry of research on novel sampling and capturing devices that merge successive-approximation based analogue-to-digital converters with image sensors at the pixel or sample level. This enables the sample-based, or bitplane-based capturing of the input multimedia data. At the same time, very recent results demonstrated that image displays enabling the incremental refinement of a large number of luminance shades without flicker are possible. This enables the incrementally-produced output to be directly consumed by the display monitor. These novel developments in circuit theory and design seem very promising in solving the capturing and display aspects for systems that process the input data incrementally.In summary, conventional systems provide an all or nothing multimedia representation; the computation cannot be interrupted arbitrarily when resources become unavailable and retrieve a meaningful approximation of the final result. Contrasting the existing paradigm, we propose to investigate, for the first time, a new category of best-effort signal processing and multimedia systems. Applications of this type of systems are in all environments where resources may bescarce or uncertain due to environmental constraints, based on user choice, or, finally, by construction. Examples are:* portable multimedia systems with limited energy resources,* resource-constrained adaptive surveillance or monitoring applications with always on features,* fault tolerant multimedia algorithm and system design, and* progressive pricing schemes and progressive upgrades for quality-upgradeable hardware.
当今的多媒体编码系统不能在降级的系统资源下提供无缝的质量降级。例如,如果一个人在便携式视频播放器上观看视频,或者正在进行非常重要的电话呼叫,并且这正在耗尽系统资源(电池),则当前系统不允许视觉(音频)质量与电池寿命(计算)的无缝折衷。今天,用户实际上面临着数字世界的开/关情况,而人们会强烈选择模拟世界,能源或计算资源(复杂性)与多媒体质量进行权衡(例如视觉或听觉失真)我们提出基于我们称为多媒体编码计算的操作细化的新范例从根本上改变传统多媒体编码算法的计算方式。系统.关键原理是基于改变多媒体编码算法的实现,以实现计算的增量细化的新原理:在多媒体信息(例如图像/视频/音频)的细化下,算法计算细化先前计算的结果,从而导致输出的增量计算。与现有系统相比,输入/输出多媒体信号的增量处理或重构实现了三个关键优点。首先,复杂度-失真权衡可以用公式表示,因为每个细化层都以额外的复杂度为代价来提高输出结果的质量(减少失真)。其次,每个细化输入/输出层通常由具有有限动态范围的数据(例如,单位精度数据)组成。因此,处理任务的复杂性可以根据源统计数据更准确地建模。第三,每个细化层可以在实现架构的不同部分中调度,并且所有层的计算可以并行化。预计这将大大提高执行速度和硬件利用率。已经对新颖的采样和捕获设备进行了一系列研究,这些设备在像素或样本级将基于逐次逼近的模数转换器与图像传感器合并。这使得能够对输入多媒体数据进行基于样本或基于位平面的捕获。与此同时,最近的结果表明,图像显示,使大量的亮度色调的增量细化没有闪烁是可能的。这使得增量产生的输出能够被显示监视器直接消耗。这些电路理论和设计的新发展似乎非常有前途的解决捕获和显示方面的系统,处理输入数据incrementally.In总结,传统的系统提供了一个全或没有多媒体表示;计算不能被任意中断时,资源变得不可用,并检索一个有意义的近似的最终结果。对比现有的范例,我们建议调查,第一次,一类新的尽力而为的信号处理和多媒体系统。这种类型的系统的应用是在所有的环境中,资源可能会由于环境约束,基于用户的选择,或最终,通过建设bescarce或不确定的。例如:* 能源有限的便携式多媒体系统,* 资源受限的自适应监视或监控应用程序,* 容错多媒体算法和系统设计,以及 * 渐进式定价方案和渐进式升级的质量可接受的硬件。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized Numerical Entanglement for Reliable Linear, Sesquilinear and Bijective Operations on Integer Data Streams
Distortion estimates for adaptive lifting transforms with noise
带有噪声的自适应提升变换的失真估计
  • DOI:
    10.1016/j.imavis.2011.08.004
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Verdicchio F
  • 通讯作者:
    Verdicchio F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiannis Andreopoulos其他文献

Boundary layer separation induced by successive favorable and adverse pressure gradients
  • DOI:
    10.1007/bf03181627
  • 发表时间:
    2004-09-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Savvas S. Xanthos;Mahmoud Ardebili;Yiannis Andreopoulos
  • 通讯作者:
    Yiannis Andreopoulos
Density and compressibility effects in turbulent subsonic jets part 1: mean velocity field
湍流亚音速射流中的密度和可压缩性效应 第 1 部分:平均速度场
  • DOI:
    10.1007/s00348-009-0738-y
  • 发表时间:
    2009-09-16
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Zhexuan Wang;Yiannis Andreopoulos
  • 通讯作者:
    Yiannis Andreopoulos
Heat transfer enhancement by induced vortices in the vicinity of a rotationally oscillating heated plate
  • DOI:
    10.1016/j.ijheatmasstransfer.2017.05.006
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Moise Koffi;Yiannis Andreopoulos;Latif Jiji
  • 通讯作者:
    Latif Jiji

Yiannis Andreopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiannis Andreopoulos', 18)}}的其他基金

Collaborative Research: Kinetic-based self-transitioning turbulence modeling for pulsatile flows
合作研究:基于动力学的脉动流自转变湍流建模
  • 批准号:
    1803294
  • 财政年份:
    2018
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Deep Learning from Crawled Spatio-Temporal Representations of Video (DECSTER)
从视频的爬行时空表示中进行深度学习 (DECSTER)
  • 批准号:
    EP/R025290/1
  • 财政年份:
    2018
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Research Grant
The Internet of Silicon Retinas (IoSiRe): Machine to machine communications for neuromorphic vision sensing data
硅视网膜互联网 (IoSiRe):用于神经形态视觉传感数据的机器对机器通信
  • 批准号:
    EP/P02243X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Research Grant
Symposium on Physics and Control of Turbulent Shear Flow
湍流剪切流物理与控制研讨会
  • 批准号:
    1737841
  • 财政年份:
    2017
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
I-Corps: Fluidic Energy Harvesters for Green Building Applications
I-Corps:用于绿色建筑应用的流体能量采集器
  • 批准号:
    1547627
  • 财政年份:
    2015
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Error-tolerant Stream Processing System Design (ESP-SD)
容错流处理系统设计(ESP-SD)
  • 批准号:
    EP/M00113X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Research Grant
Fluidic Energy Harvesters: A case of Aero-Electro-Mechanical Interaction
流体能量采集器:航空机电相互作用案例
  • 批准号:
    1033117
  • 财政年份:
    2010
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Continuously Graded Cementitious Material for Blast Protection of Structures
用于结构爆炸防护的连续级配胶凝材料
  • 批准号:
    0800307
  • 财政年份:
    2008
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Turbulence and Vortex Interactions with Shock Waves
湍流和涡旋与冲击波的相互作用
  • 批准号:
    9104767
  • 财政年份:
    1991
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant

相似海外基金

Thermo-Mechanical Separation by Atomic Diffusion for Refinement and Recycling of Alloys
通过原子扩散进行热机械分离,用于合金的精炼和回收
  • 批准号:
    2311311
  • 财政年份:
    2024
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Bond Strengthening and Grain Size Refinement in Superhard Metal Borides
超硬金属硼化物中的键强化和晶粒尺寸细化
  • 批准号:
    2312942
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Continuing Grant
Development, Evaluation and Refinement of Metalloenediyne Complex Cyclization Kinetics for Biological Applications
用于生物应用的金属烯二炔络合物环化动力学的开发、评估和完善
  • 批准号:
    2247314
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Standard Grant
Refinement and q-deformation of topological recursion and their applications
拓扑递归的细化和q变形及其应用
  • 批准号:
    23K12968
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of tools for rapid systematic refinement of in vivo gene editing technologies
开发用于快速系统完善体内基因编辑技术的工具
  • 批准号:
    10740025
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
Refinement of marine nitrogen isoscapes as a basis for Iso-logging
作为等值测井基础的海洋氮等值图的细化
  • 批准号:
    23H03535
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Emergence and Refinement of Grammars: perspectives from syntax and phonology
语法的出现和完善:句法和音韵学的视角
  • 批准号:
    2890509
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Studentship
CAREER: Robot Learning of Complex Tasks via Skill Reusability and Refinement
职业:机器人通过技能的可重用性和改进来学习复杂的任务
  • 批准号:
    2237463
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Continuing Grant
VERGE - Valve Edge Matching Refinement for Greater Efficiency
VERGE - 阀门边缘匹配细化以提高效率
  • 批准号:
    10073937
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Collaborative R&D
Understanding and supporting self-harm recovery through qualitative survivor research: development and refinement of the Self-Harm Recovery Mode
通过定性幸存者研究理解和支持自残康复:自残康复模式的开发和完善
  • 批准号:
    2889169
  • 财政年份:
    2023
  • 资助金额:
    $ 29.74万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了