Periodic Spectral Problems
周期性频谱问题
基本信息
- 批准号:EP/F029721/1
- 负责人:
- 金额:$ 54.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Periodic differential operators arise in many areas of physics and mathematics, and studying their spectral properties is very important. Spectra of periodic operators have a band-gap structure, that is, they consist of a collection of closed intervals possibly separated by gaps. There is a famous hypothesis, called the Bethe-Sommerfeld conjecture, which claims that the number of gaps is finite. It has been justified for the Schroedinger operator with an electric field. One aim of the present project is to prove the conjecture in a much more general setting. The solution is expected to require the use of the pseudo-differential calculus, geometry of lattices and geometrical combinatorics. An important quantitative characteristic of differential operators acting on a non-compact manifold in the so-called integrated density of states. This function is a natural analogue of the spectral counting function. We plan to study the behaviour of this function for large values of energy and, in particular, to prove that the density of states has a complete asymptotic expansion in the (negative as well as positive) powers of energy.We also plan to study more basic properties of the nature of the spectrum, namely whether the spectrum is absolutely continuous. We plan to give establish a wide range of sufficient conditions which guarantee the absolute continuity of the spectrum. Finally, we plan to study limit-periodic problems. These problems are natural generalisation of the periodic ones. While the class of limit-periodic operators is not as wide as the class of quasi-periodic or almost-periodic operators, some of the methods of the periodic theory are applicable to the limit-periodic case. We intend to prove the Bethe-Sommerfeld conjecture in the limit-periodic setting.
周期微分算子出现在物理和数学的许多领域,研究其谱性质是非常重要的。周期性算子的谱具有带隙结构,也就是说,它们由可能被带隙隔开的闭合区间的集合组成。有一个著名的假设,称为贝特-索末菲猜想,它声称间隙的数量是有限的。这已经证明了薛定谔算子与电场。本项目的一个目的是在一个更一般的设置证明猜想。该解决方案预计需要使用伪微分学,几何格和几何组合学。微分算子作用在非紧流形上的积分态密度的一个重要的定量特征。该函数是光谱计数函数的自然模拟。我们计划研究该函数在大能量下的行为,特别是证明态密度在能量的(负的和正的)幂次方上有一个完全的渐近展开,我们还计划研究谱的性质的更多基本性质,即谱是否绝对连续。我们计划建立一个广泛的充分条件,保证绝对连续的频谱。最后,我们计划研究极限周期问题。这些问题是周期问题的自然推广。虽然极限周期算子的类不像拟周期算子或概周期算子的类那样宽,但周期理论的一些方法适用于极限周期的情况。我们打算在极限周期背景下证明Bethe-Sommerfeld猜想。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a class of inverse electrostatic and elasticity problems
关于一类静电与弹性反问题
- DOI:10.48550/arxiv.1210.0124
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Artemev A
- 通讯作者:Artemev A
Operator Theory and Its Applications
算子理论及其应用
- DOI:10.1090/trans2/231/11
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Levitin M
- 通讯作者:Levitin M
Weakly coupled bound states of Pauli operators
- DOI:10.1007/s00526-010-0339-x
- 发表时间:2011-01-01
- 期刊:
- 影响因子:2.1
- 作者:Frank, Rupert L.;Morozov, Sergey;Vugalter, Semjon
- 通讯作者:Vugalter, Semjon
Exponential decay of eigenfunctions of Brown-Ravenhall operators
Brown-Ravenhall 算子本征函数的指数衰减
- DOI:10.1088/1751-8113/42/47/475206
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Morozov S
- 通讯作者:Morozov S
DISTRIBUTION OF INTEGER LATTICE POINTS IN A BALL CENTRED AT A DIOPHANTINE POINT
以丢番图点为中心的球中整数晶格点的分布
- DOI:10.1112/s0025579309000527
- 发表时间:2009
- 期刊:
- 影响因子:0.8
- 作者:Kang H
- 通讯作者:Kang H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Parnovski其他文献
Perturbative Diagonalization and Spectral Gaps of Quasiperiodic Operators on $$\ell ^2(\mathbb Z^d)$$ with Monotone Potentials
- DOI:
10.1007/s00220-025-05280-y - 发表时间:
2025-05-07 - 期刊:
- 影响因子:2.600
- 作者:
Ilya Kachkovskiy;Leonid Parnovski;Roman Shterenberg - 通讯作者:
Roman Shterenberg
Sloshing, Steklov and corners: Asymptotics of sloshing eigenvalues
- DOI:
10.1007/s11854-021-0188-x - 发表时间:
2021-12-31 - 期刊:
- 影响因子:0.900
- 作者:
Michael Levitin;Leonid Parnovski;Iosif Polterovich;David A. Sher - 通讯作者:
David A. Sher
Leonid Parnovski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Parnovski', 18)}}的其他基金
Stable and unstable almost-periodic problems
稳定和不稳定的近周期问题
- 批准号:
EP/P024793/1 - 财政年份:2017
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
Almost periodic and related multi-dimensional spectral problems
几乎周期性和相关的多维谱问题
- 批准号:
EP/J016829/1 - 财政年份:2012
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
相似国自然基金
一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
- 批准号:LTGY23H220001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于spectral集和spectral拓扑若干问题研究
- 批准号:11661057
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
- 批准号:11473055
- 批准年份:2014
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
Complex Methods in Spectral and Scattering Problems
光谱和散射问题的复杂方法
- 批准号:
2244801 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant
Spectral properties of interface problems for Maxwell systems
麦克斯韦系统界面问题的谱特性
- 批准号:
EP/W007037/1 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
- 批准号:
RGPIN-2019-06751 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Discovery Grants Program - Individual
Spectral properties of interface problems for Maxwell systems
麦克斯韦系统界面问题的谱特性
- 批准号:
EP/W006553/1 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Research Grant
RUI: Multiscale Methods, Singular Limits, and Spectral Problems Related to Materials Science
RUI:与材料科学相关的多尺度方法、奇异极限和谱问题
- 批准号:
2110036 - 财政年份:2021
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
- 批准号:
RGPIN-2019-06751 - 财政年份:2021
- 资助金额:
$ 54.22万 - 项目类别:
Discovery Grants Program - Individual
Spectral Preconditioners for High Frequency Wave Propagation Problems
用于高频波传播问题的频谱预处理器
- 批准号:
2595936 - 财政年份:2021
- 资助金额:
$ 54.22万 - 项目类别:
Studentship
Semiclassical analysis of spectral and scattering problems arising from energy-level crossings
能级交叉引起的光谱和散射问题的半经典分析
- 批准号:
21K03282 - 财政年份:2021
- 资助金额:
$ 54.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
- 批准号:
RGPIN-2019-06751 - 财政年份:2020
- 资助金额:
$ 54.22万 - 项目类别:
Discovery Grants Program - Individual
Spectral problems of mathematical physics and material science
数学物理和材料科学的光谱问题
- 批准号:
2007408 - 财政年份:2020
- 资助金额:
$ 54.22万 - 项目类别:
Standard Grant














{{item.name}}会员




