Spectral problems of mathematical physics and material science
数学物理和材料科学的光谱问题
基本信息
- 批准号:2007408
- 负责人:
- 金额:$ 20.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is devoted to studying various spectral phenomena arising in mathematical physics and areas of novel material science that have been enjoying increased interest recently, among them photonics, carbon nanostructure, and topological insulators. For such problems, it is important to study the spectral properties of several operators, such as the Schrödinger and Dirac operators, as well as operators on quantum graphs. When dealing with crystalline matter, the operators are usually periodic (possibly perturbed by impurities) with respect to appropriate crystalline groups. Many novel materials and meta-materials, such as graphene, graphynes, carbon nanotubes, topological insulators, photonic crystals, and thin dielectric or electronic structures require such studies, which turn out to be challenging and involve high-level and diverse mathematical tools. The results of the project will significantly benefit the active area of novel materials and meta-materials that carry a high promise of technological revolution, including topological insulators, carbon (and other) nanomaterials, slowing light media, and nano-scale electronics. The results will be disseminated in publications in research journals, research presentations nationwide and internationally, taught in graduate level classes, and addressed in a monograph. The project will address a number of problems in several interconnected areas. These include: dispersion relations and spectra, crucial for understanding the properties of crystalline matter; thresholds effects, including a model of “slow light” media; Morse indices and nodal patterns, aiming at further developing a recent discovery of this connection; thin open book structures, addressing models of branching thin surface-like media; frames of Wannier functions in the presence of topological obstructions (as in topological insulators) and gap absence; and analytic properties of Fermi and Bloch varieties in discrete and continuous cases. The project will lead to further development of mathematical techniques important for novel material science, condensed matter physics, photonics, and chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目致力于研究数学物理和新材料科学领域中出现的各种光谱现象,这些领域最近受到越来越多的关注,其中包括光子学,碳纳米结构和拓扑绝缘体。对于这样的问题,重要的是研究几个算子的谱性质,例如薛定谔和狄拉克算子,以及量子图上的算子。 当处理晶体物质时,算子通常是周期性的(可能受到杂质的干扰)。许多新材料和超材料,如石墨烯,石墨烯,碳纳米管,拓扑绝缘体,光子晶体和薄电介质或电子结构需要这样的研究,这是具有挑战性的,涉及高层次和多样化的数学工具。该项目的结果将显着有利于具有很高技术革命前景的新型材料和超材料的活跃领域,包括拓扑绝缘体、碳(和其他)纳米材料、慢光介质和纳米级电子产品。 研究结果将在研究期刊出版物中传播,在全国和国际上进行研究演示,在研究生课程中授课,并在专著中讨论。该项目将解决若干相互关联领域的若干问题。其中包括:色散关系和光谱,对理解晶体物质的性质至关重要;阈值效应,包括“慢光”介质的模型;莫尔斯指数和节点模式,旨在进一步发展最近发现的这种联系;薄开卷结构,解决分支薄表面状介质的模型;框架的Wannier功能存在的拓扑障碍物(如拓扑绝缘体)和差距的情况下,和分析性质的费米和布洛赫品种在离散和连续的情况下。该项目将导致新材料科学、凝聚态物理学、光子学和化学的重要数学技术的进一步发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-Representation Problem in Banach Spaces
Banach空间中的三表示问题
- DOI:10.1007/s11785-021-01079-6
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Kuchment, P.
- 通讯作者:Kuchment, P.
Generic properties of dispersion relations for discrete periodic operators
离散周期算子色散关系的一般性质
- DOI:10.1063/5.0018562
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Do, Ngoc;Kuchment, Peter;Sottile, Frank
- 通讯作者:Sottile, Frank
DISPERSION RELATIONS AND SPECTRA OF PERIODICALLY PERFORATED STRUCTURES
周期性穿孔结构的色散关系和光谱
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kuchment, Peter;Taskinen, Jari
- 通讯作者:Taskinen, Jari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kuchment其他文献
Peter Kuchment的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kuchment', 18)}}的其他基金
Inverse Problems for Biomedical Imaging and Homeland Security
生物医学成像和国土安全的反问题
- 批准号:
1816430 - 财政年份:2018
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Spectral Problems of Mathematical Physics Related to Novel Materials Science and Photonics
与新材料科学和光子学相关的数学物理谱问题
- 批准号:
1517938 - 财政年份:2015
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Collaborative research: Mathematics of emerging imaging methods in medicine and homeland security
合作研究:医学和国土安全中新兴成像方法的数学
- 批准号:
1211463 - 财政年份:2012
- 资助金额:
$ 20.14万 - 项目类别:
Continuing Grant
Analysis on Graphs and its Applications: Follow-up Meeting
图分析及其应用:后续会议
- 批准号:
0963287 - 财政年份:2010
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Techniques for Emerging Methods in Biomedical Imaging
合作研究:生物医学成像新兴方法的数学技术
- 批准号:
0908208 - 财政年份:2009
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
SM: Graph Models in Nanotechnology, Photonics, Chemistry, and Other Areas
SM:纳米技术、光子学、化学和其他领域的图模型
- 批准号:
0648786 - 财政年份:2007
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Mathematical Methods for Novel Modalities of Medical Imaging
医学成像新模式的数学方法
- 批准号:
0604778 - 财政年份:2006
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
- 批准号:
0296150 - 财政年份:2001
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Band-gap Materials, Mesoscopic Structures, and Related Topics
带隙材料、介观结构及相关主题
- 批准号:
0072248 - 财政年份:2000
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Spectral Problems of Mathematical Physics Related to Novel Materials Science and Photonics
与新材料科学和光子学相关的数学物理谱问题
- 批准号:
1517938 - 财政年份:2015
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences, Using Spectral Data to Solve Inverse Problems, December 14-18, 2001
NSF/CBMS 数学科学区域会议,使用谱数据解决反问题,2001 年 12 月 14-18 日
- 批准号:
0085884 - 财政年份:2001
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Fast Spectral-Galerkin Algorithms for Elliptic Problems and Efficient Solution Techniques for Unsteady Navier-Stokes Equations
数学科学:椭圆问题的快速谱伽辽金算法和非定常纳维-斯托克斯方程的高效求解技术
- 批准号:
9623020 - 财政年份:1996
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Mathematical Sciences: NSF/CBMS Regional Conference in the Mathematical Sciences--Spectral Problems in Geometry and Arithmetic--August18-22, 1997
数学科学:NSF/CBMS 数学科学区域会议——几何和算术中的谱问题——1997 年 8 月 18 日至 22 日
- 批准号:
9612075 - 财政年份:1996
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Spectral Problems and Meromorphic Solutions of Differential Equations
数学科学:反谱问题和微分方程的亚纯解
- 批准号:
9623121 - 财政年份:1996
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Spectral and Asymptotoc Problems of Mathematical Physics
数学物理的谱和渐近问题
- 批准号:
9622730 - 财政年份:1996
- 资助金额:
$ 20.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Problems and Inverse Spectral Problems
数学科学:谱问题和逆谱问题
- 批准号:
9500867 - 财政年份:1995
- 资助金额:
$ 20.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inverse Spectral Problems in Riemannian Geometry
数学科学:黎曼几何中的逆谱问题
- 批准号:
9404298 - 财政年份:1994
- 资助金额:
$ 20.14万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral and Symptotic Problems of Mathematical Physics
数学科学:数学物理的谱和症状问题
- 批准号:
9211624 - 财政年份:1992
- 资助金额:
$ 20.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Problems and Inverse Spectral Problems
数学科学:谱问题和逆谱问题
- 批准号:
9203771 - 财政年份:1992
- 资助金额:
$ 20.14万 - 项目类别:
Continuing Grant