Spinal Cord Computer Interface

脊髓计算机接口

基本信息

  • 批准号:
    7405397
  • 负责人:
  • 金额:
    $ 18.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-15 至 2009-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Following spinal cord damage from trauma or disease, skeletal muscles distal to the point of damage become paralyzed due to disrupted neural conduction. In high-level spinal cord injury (quadriplegia), there is a great need for a method that can substitute the voluntary control for self-mobility, computer access, or environmental control. Current Solution: The 'brain-computer interfaces' have been developed to extract this volitional control information from the motor cortex. The cortical signals are recorded with microelectrode/microwire arrays implanted and interpreted with advanced signal processing algorithms? Short Comings: However, there remain two main problems to be solved that are inherent to the cortical approach. First, with the cortical implantation of the electrodes the population of neurons recorded from changes day to day, thus requiring a training session for the signal processor every day. Second, the number of good electrodes that actually record activity in each array (yield) is very low and all the signals are lost after sometime. Our Proposal: The alternative method proposed here is to extract the volitional motor signals from the proximal spinal cord that is still intact above the site of injury. The distal portions of the severed axons go through Wallerian degeneration. However, the proximal part of the axon continues to function years after the injury since its connection to the cell body in the cortex is still intact. A Spinal Cord- Computer Interface (SCCI) can have information flow rates that are much higher than that of brain-computer interfaces since a majority of the recording electrodes will be functional (see background and significance). The stability of the recordings will also be improved due to the neuroanatomy of the spinal cord. These improvements are crucially needed before such neural interfaces can move into the clinical phase to help individuals with high level spinal cord injury. Significance: Each year about 15,000 spinal cord injuries occur in the US. Majority of these cases survive and need help for their basic needs. The average life expectance of this population is 40 years. Any tool or instrument that can provide them with self-mobility, environmental control, and computer access is priceless.
描述(由申请人提供):创伤或疾病导致脊髓损伤后,损伤点远端的骨骼肌由于神经传导中断而瘫痪。在高位脊髓损伤(四肢瘫痪)中,非常需要一种方法,可以替代自主控制,以实现自我移动,计算机访问或环境控制。 目前的解决方案:“脑机接口”已经被开发出来,从运动皮层提取这种意志控制信息。皮层信号记录与微电极/微线阵列植入和解释与先进的信号处理算法?短来: 然而,仍然有两个主要问题需要解决,这是固有的皮质方法。首先,在皮层植入电极后,神经元的数量每天都在变化,因此每天都需要对信号处理器进行训练。其次,实际记录每个阵列中活动的良好电极的数量(产量)非常低,并且所有信号在一段时间后都会丢失。我方建议:本文提出的另一种方法是从损伤部位上方仍然完整的近端脊髓中提取意志运动信号。切断的轴突的远端部分经历沃勒变性。然而,轴突的近端部分在损伤后几年继续发挥作用,因为它与皮质中的细胞体的连接仍然完好无损。脊髓- 计算机接口(SCCI)可以具有比脑-机接口高得多的信息流速率,因为大多数记录电极将是功能性的(参见背景和重要性)。由于脊髓的神经解剖学,记录的稳定性也将得到改善。在这种神经接口进入临床阶段以帮助高水平脊髓损伤患者之前,这些改进是至关重要的。重要性:美国每年约有15,000例脊髓损伤。这些病例中的大多数幸存下来,需要帮助满足基本需求。这一人口的平均预期寿命为40岁。任何能够为他们提供自我移动、环境控制和计算机访问的工具或仪器都是无价的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-channel recordings of the motor activity from the spinal cord of behaving rats.
行为大鼠脊髓运动活动的多通道记录。
Can motor volition be extracted from the spinal cord?
可以从脊髓中提取运动意志吗?
Extraction of motor activity from the cervical spinal cord of behaving rats.
从行为大鼠的颈脊髓中提取运动活动。
  • DOI:
    10.1088/1741-2560/3/4/005
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Prasad,Abhishek;Sahin,Mesut
  • 通讯作者:
    Sahin,Mesut
Characterization of neural activity recorded from the descending tracts of the rat spinal cord.
从大鼠脊髓下行束记录的神经活动特征。
  • DOI:
    10.3389/fnins.2010.00021
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Prasad,Abhishek;Sahin,Mesut
  • 通讯作者:
    Sahin,Mesut
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MESUT SAHIN其他文献

MESUT SAHIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MESUT SAHIN', 18)}}的其他基金

Electrical and Ultrasonic Modulation of Lateral Cerebellar Nucleus
小脑外侧核的电和超声调制
  • 批准号:
    10347883
  • 财政年份:
    2021
  • 资助金额:
    $ 18.16万
  • 项目类别:
Spinal Cord-to-Computer Interface
脊髓到计算机接口
  • 批准号:
    8522320
  • 财政年份:
    2011
  • 资助金额:
    $ 18.16万
  • 项目类别:
Spinal Cord-to-Computer Interface
脊髓到计算机接口
  • 批准号:
    8720825
  • 财政年份:
    2011
  • 资助金额:
    $ 18.16万
  • 项目类别:
Spinal Cord-to-Computer Interface
脊髓到计算机接口
  • 批准号:
    8328925
  • 财政年份:
    2011
  • 资助金额:
    $ 18.16万
  • 项目类别:
Spinal Cord-to-Computer Interface
脊髓到计算机接口
  • 批准号:
    8187094
  • 财政年份:
    2011
  • 资助金额:
    $ 18.16万
  • 项目类别:
Floating Light Activated Micro-Electrical Stimulators for Neural Prosthetics
用于神经修复的浮动光激活微电刺激器
  • 批准号:
    8089484
  • 财政年份:
    2009
  • 资助金额:
    $ 18.16万
  • 项目类别:
Floating Light Activated Micro-Electrical Stimulators for Neural Prosthetics
用于神经修复的浮动光激活微电刺激器
  • 批准号:
    7741496
  • 财政年份:
    2009
  • 资助金额:
    $ 18.16万
  • 项目类别:
Floating Light Activated Micro-Electrical Stimulators for Neural Prosthetics
用于神经修复的浮动光激活微电刺激器
  • 批准号:
    8281535
  • 财政年份:
    2009
  • 资助金额:
    $ 18.16万
  • 项目类别:
Floating Light Activated Micro-Electrical Stimulators for Neural Prosthetics
用于神经修复的浮动光激活微电刺激器
  • 批准号:
    7900403
  • 财政年份:
    2009
  • 资助金额:
    $ 18.16万
  • 项目类别:
Spinal Cord Computer Interface
脊髓计算机接口
  • 批准号:
    7255246
  • 财政年份:
    2007
  • 资助金额:
    $ 18.16万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 18.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了