The use of probabilistic climate scenarios in building environmental performance simulation

概率气候场景在建筑环境性能模拟中的应用

基本信息

  • 批准号:
    EP/F038224/1
  • 负责人:
  • 金额:
    $ 6.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Climate change will impact on buildings in many different ways: on energy use in heating, cooling and lighting systems, on the internal temperature experience and, potentially, on indoor air quality. Adapting to increasing temperatures may increase demand on cooling systems: if this were to be met by conventional air-conditioning there would be increased carbon dioxide emissions which would exacerbate the situation. Climate change may also compromise the viability of traditional and innovative passive design solutions, alter the balance of the use of daylighting and trigger retrofitting of building fabric and systems. It is imperative that such developments do not increase the carbon footprints of buildings.Dynamic simulation models (DSM), together with calculation procedures based on 'manual methods' are a key resource for the design and analysis of energy and comfort in buildings: such programs and procedures have become an accepted and, in some situations, a mandatory part of the building design and analysis process. DSMs work from a time-series input file (normally hourly) and hence are deterministic in nature. Recently it has been demonstrated that the effects of climate change on energy consumption and thermal comfort for a variety of buildings can be predicted using weather data derived from the UKCIP02 climate change scenarios. The future availability of such scenarios in a probabilistic form (UKCIP08) presents both an opportunity and a challenge: the opportunity to provide a more flexible framework for decision-making, but a challenge in how the new scenarios can be effectively interfaced with currently available models to provide clear information with which to inform adaptation decisions.This two-year project aims to address both these issues by combining case study-based modelling with the development of both tabular and hourly weather data produced from the output of the new UKCIP08 scenarios. The project team will consist of the Institute of Energy and Sustainable Development, De Montfort University and the Climatic Research Unit, University of East Anglia, in partnership with Arup. Project management will be structured around a regular series of stakeholder workshops, which will play a key role in shaping the work of the project partners.The first phase (approximately one year) will focus on technical challenges relating to modelling buildings with probabilistic data. A key issue will be the development of methods of sampling from the probability density functions that will be produced from the climate scenarios, in order to form the inputs required by DSMs. This work will build on progress made in previous projects carried out by the proposers and also relate to a number of significant on-going research projects such as CaRB and TARBASE. The second phase of the work will follow on from the availability of the UKCIP08 data and will explore optimal ways to provide inputs to the DSMs and effective means of tailoring the outputs to inform adaptation decision-making. A direct comparison will be made between the deterministic approach adopted, for example, in the BETWIXT and UKCIP02 projects, and the newer, probabilistic methods (the CRANIUM and UKCIP08 projects). The primary outcome of this project will be improved methodologies for carrying out building performance analysis simulations, in order to inform design and adaptation decisions in situations where significant uncertainties must be accounted for.
气候变化将以许多不同的方式影响建筑物:加热,冷却和照明系统的能源使用,内部温度体验以及潜在的室内空气质量。适应不断上升的温度可能会增加对冷却系统的需求:如果通过传统的空调来满足这一需求,那么二氧化碳排放量就会增加,这将使情况恶化。气候变化还可能损害传统和创新被动设计解决方案的可行性,改变采光使用的平衡,并引发建筑结构和系统的改造。动态模拟模型(DSM)以及基于“人工方法”的计算程序是建筑物能源和舒适度设计和分析的关键资源:这些程序和程序已成为公认的,在某些情况下,是建筑设计和分析过程的强制性部分。DSM根据时间序列输入文件(通常每小时)工作,因此本质上是确定性的。最近,它已被证明,气候变化对能源消耗和热舒适的各种建筑物的影响,可以预测来自UKCIP02气候变化情景的天气数据。未来以概率形式提供此类情景(UKCIP08)既带来了机遇,也带来了挑战:提供一个更灵活的决策框架的机会,但是,如何将新的情景与现有的模型有效地结合起来,为适应决策提供明确的信息,这是一个挑战。这个为期两年的项目旨在通过结合案例研究来解决这两个问题,基于UKCIP08新情景输出的表格和每小时天气数据的开发的建模。该项目小组将由德蒙福特大学能源和可持续发展研究所和东安格利亚大学气候研究所组成,并与奥雅纳合作。项目管理将围绕定期举办的一系列利益攸关方讲习班进行,这些讲习班将在塑造项目合作伙伴的工作方面发挥关键作用,第一阶段(约一年)将侧重于与利用概率数据建立建筑物模型有关的技术挑战。一个关键的问题是,从气候假设情景产生的概率密度函数中制定抽样方法,以形成需求侧模型所需的投入。这项工作将建立在提案人以前开展的项目所取得的进展的基础上,并与一些正在进行的重要研究项目有关,如CaRB和TARBASE。第二阶段的工作将在UKCIP08数据可用后继续进行,并将探索向需求监测机制提供投入的最佳方式,以及调整产出以通报适应决策的有效手段。将直接比较BETWIXT和UKCIP02项目等采用的确定性方法与较新的概率方法(CRANIUM和UKCIP08项目)。该项目的主要成果将是改进建筑性能分析模拟方法,以便在必须考虑重大不确定性的情况下为设计和适应决策提供信息。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of probabilistic climate projections on building energy simulation
概率气候预测对建筑能源模拟的影响
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clare Goodess
  • 通讯作者:
    Clare Goodess
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Jones其他文献

Further Steps in Standardisation Report of the Second Annual Proteomics Standards Initiative Spring Workshop (Siena, Italy 17–20th April 2005)
第二届年度蛋白质组学标准倡议春季研讨会标准化报告的进一步进展(意大利锡耶纳,2005 年 4 月 17-20 日)
  • DOI:
    10.1002/pmic.200500626
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    S. Orchard;H. Hermjakob;Chris F. Taylor;F. Potthast;Philip Jones;Weimin Zhu;R. Julian;R. Apweiler
  • 通讯作者:
    R. Apweiler
Drug Discovery : Planning a Turnaround
药物发现:计划周转
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Toniatti;Philip Jones;Hilary Graham;Bruno Pagliara;G. Draetta
  • 通讯作者:
    G. Draetta
Government spending: Is development assistance harmonised with other budgets?
政府支出:发展援助是否与其他预算协调一致?
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Abbott;Philip Jones
  • 通讯作者:
    Philip Jones
Integrating global and regional analyses of the effects of climate change: A case study of land use in England and Wales
整合气候变化影响的全球和区域分析:英格兰和威尔士土地利用案例研究
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin L. Parry;J. Hossell;Philip Jones;T. Rehman;Richard Tranter;J. Marsh;Cynthia Rosenzweig;Günther Fischer;I. Carson;R. Bunce
  • 通讯作者:
    R. Bunce
Effect of High-Dose Selenium on Postoperative Organ Dysfunction and Mortality in Cardiac Surgery Patients
高剂量硒对心脏手术患者术后器官功能障碍和死亡率的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    16.9
  • 作者:
    C. Stoppe;B. McDonald;P. Meybohm;K. Christopher;S. Fremes;R. Whitlock;S. Mohammadi;D. Kalavrouziotis;G. Elke;R. Rossaint;P. Helmer;K. Zacharowski;U. Günther;M. Parotto;B. Niemann;A. Böning;C. Mazer;Philip Jones;M. Ferner;Y. Lamarche;F. Lamontagne;O. Liakopoulos;M. Cameron;M. Müller;A. Zarbock;M. Wittmann;A. Goetzenich;E. Kilger;L. Schomburg;A. Day;D. Heyland;Gregory M. T. Hare;Michael WA Chu;P. Voisine;François Dagenais;E. Dumont;Frédérique Jacques;É. Charbonneau;Jean Perron;Simone Lindau;Roupen Hatzakorizan;Assad Haneya;G. Trummer;Angela Jareth;Xuran Jiang;E. Dresen;Aileen Hill
  • 通讯作者:
    Aileen Hill

Philip Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Jones', 18)}}的其他基金

EAPSI:RESEARCH EXPERIENCE ON HIGH CAPACITY CATHODES AT ADVANCED BATTERY LABORATORY, NUS, SINGAPORE
EAPSI:新加坡国立大学高级电池实验室高容量阴极的研究经验
  • 批准号:
    1105449
  • 财政年份:
    2011
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Fellowship Award
ARCADIA: Adaptation and Resilience in Cities: Analysis and Decision making using Integrated Assessment
ARCADIA:城市的适应和恢复力:使用综合评估进行分析和决策
  • 批准号:
    EP/G061211/1
  • 财政年份:
    2009
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Research Grant
Climate Change. Masters Training Grant (MTG) to provide funding for 4 full studentships for two years.
气候变化。
  • 批准号:
    NE/H525538/1
  • 财政年份:
    2009
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Training Grant
Nanofibre Optical Interfaces for Ions, Atoms and Molecules
离子、原子和分子的纳米纤维光学接口
  • 批准号:
    EP/H006907/1
  • 财政年份:
    2009
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Research Grant
SCORCHIO: Sustainable Cities: Options for Responsing to Climate cHange Impacts and Outcomes
SCORCHIO:可持续城市:应对气候变化影响和成果的选择
  • 批准号:
    EP/E017649/1
  • 财政年份:
    2007
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Research Grant
Climate change, Science impacts and policy
气候变化、科学影响和政策
  • 批准号:
    NE/E522991/1
  • 财政年份:
    2006
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Training Grant
Upgrading Capability For Processing Tissues For Light Microscopy
升级光学显微镜组织处理能力
  • 批准号:
    7813154
  • 财政年份:
    1978
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Publication of 'san Lorenzo- Olmec Man and Olmec Land'
出版《圣洛伦索-奥尔梅克人和奥尔梅克土地》
  • 批准号:
    7102521
  • 财政年份:
    1971
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
  • 批准号:
    2238375
  • 财政年份:
    2023
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Probabilistic Models for Infrastructure Risk Assessment and Management in the Changing Climate
气候变化中基础设施风险评估和管理的概率模型
  • 批准号:
    RGPIN-2022-03556
  • 财政年份:
    2022
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Discovery Grants Program - Individual
Development of probabilistic risk assessment method for aquatic environmental disasters based on large ensemble climate forecast data
基于大集合气候预报数据的水生环境灾害概率风险评估方法开发
  • 批准号:
    21K04276
  • 财政年份:
    2021
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of probabilistic risk assessment method using climate ensembles to consider both flood and drought disasters
开发利用气候集合考虑洪水和干旱灾害的概率风险评估方法
  • 批准号:
    21J01854
  • 财政年份:
    2021
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
  • 批准号:
    2151651
  • 财政年份:
    2021
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Developing probabilistic precipitation datasets for high mountain regions in a changing climate
开发气候变化下高山地区的概率降水数据集
  • 批准号:
    2446322
  • 财政年份:
    2020
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Studentship
Probabilistic and the largest-class evaluation of water-related disaster risk using large ensemble of future climate projections
利用未来气候预测的大集合对与水有关的灾害风险进行概率和最大规模评估
  • 批准号:
    17H01294
  • 财政年份:
    2017
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
High-Resolution Probabilistic Climate Projections for the Great Lakes Basin
五大湖盆地高分辨率概率气候预测
  • 批准号:
    486886-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Postdoctoral Fellowships
High-Resolution Probabilistic Climate Projections for the Great Lakes Basin
五大湖盆地高分辨率概率气候预测
  • 批准号:
    486886-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Postdoctoral Fellowships
Collaborative Research EAGER-NEON: Probabilistic Forecasting of Biodiversity Response to Intensifying Drought by Combining NEON, National Climate, Species, and Trait Data Bases
合作研究 EAGER-NEON:结合 NEON、国家气候、物种和性状数据库,对生物多样性对加剧干旱的反应进行概率预测
  • 批准号:
    1550907
  • 财政年份:
    2015
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了