COincident Probabilistic climate change weather data for a Sustainable built Environment (COPSE)
可持续建筑环境的巧合概率气候变化天气数据 (COPSE)
基本信息
- 批准号:EP/F038194/1
- 负责人:
- 金额:$ 12.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop sound methods for future climate change data for building designers to use for new buildings and refurbishments that could last to the end of this century. The principal application output will be a draft Technical Memorandum (TM) for the Chartered Institution of Building Services Engineers, CIBSE, suitable for practising designers. This will be supported by extensive case studies to validate the new weather data design methodology and be used in research tasks described later. 'Story lines' relevant to different scenarios for the climate and built environment will be developed as well as risk levels in building design to enable designers to use the weather data with confidence. The TM will provide CIBSE with a consistent methodology for the selection and use of future data for its new Design Guide, a fundamental document used by designers of buildings and their services and a supporting document for the Government's Building Regulations. The basis for this project will be the UK Climate Impacts Programme (UKCIP) future scenarios to be published in 2008 (UKCIP08) from which may be derived probabilities of different weather outcomes over this century. Academic outputs will include an extensive assessment of the carbon reduction potential of active and passive systems and designs for new and refurbished buildings. They will utilise case studies with PC simulation of the building and systems, employing the new probabilistic weather data. These assessments will provide designers and policy makers with guidelines to help reduce the growth in greenhouse gases (GHGs) from buildings, which at present contribute about 50% of the UK emissions. Other academic outputs will provide the theoretical basis underlying the proposed consistent PC-based and manual design methodology with coincident, probabilistic future weather data parameters such as solar radiation, air temperature, wind speed and direction. It is known that solar radiation and air temperature have peak values at different times and on different days but current design methods do necessarily separate them so that over-design often occurs. A related academic output will be a theory underpinning the selection of the proposed new Design Reference Year (DRY) which will facilitate building design (including passive and active heating and cooling systems and comfort assessment) with simulation on a PC. The DRY will replace the currently unsatisfactory Design Summer Year. Solar radiation data, not covered in detail in the HadRM3 and UKCIP02 models, will be developed to satisfy designers' requirements. Likewise wind data (crucial to include since wind drives natural ventilation) although the confidence level will be lower. Rainfall duration and quantity are also important in the building design process because of drainage and rain penetration damage and designers' requirements will again be reviewed.'Urban heat island' effects (urban areas are often hotter than the nearby rural areas), briefly mentioned in the present Guide, will be incorporated in the new data, developing on SCORCHIO work to provide more realistic urban weather data. Local modification or downscaling will also be applied to generate data for other sites in the UK. This will enable the new Guide to cover more than the current 14 sites for which data were developed by Manchester for CIBSE.To ensure that the new, probabilistic outputs will be useful to professionals, and to reflect best practice in design, there will be strong stakeholder involvement through the formation of a Stakeholders Group, including Corresponding Members, which will include CIBSE, architects and software houses and housebuilders. Policy interests will be reached via the Department for Communities and Local Government, and DEFRA and their contractors, such as BRE. There will be links to the Manchester-led EPSRC SCORCHIO urban heat island and climate change project, UKCIP and the Tyndall Centre.
该项目将为未来的气候变化数据制定合理的方法,供建筑设计师用于可能持续到本世纪末的新建筑和翻新工程。主要的应用成果是为英国屋宇装备工程师学会草拟一份技术备忘录,以供执业设计师使用。这将得到广泛的案例研究的支持,以验证新的天气数据设计方法,并用于稍后描述的研究任务。将制定与气候和建筑环境不同情景相关的“故事线”,以及建筑设计中的风险水平,使设计师能够放心地使用天气数据。该技术备忘录将为CIBSE提供一种一致的方法,用于选择和使用其新设计指南的未来数据,这是建筑物设计师及其服务使用的基本文件,也是政府建筑法规的支持文件。该项目的基础是将于2008年公布的英国气候影响方案(UKCIP)未来情景(UKCIP 08),从中可能得出本世纪不同天气结果的概率。学术成果将包括对主动和被动系统的碳减排潜力以及新建筑和翻新建筑的设计进行广泛评估。他们将利用案例研究与建筑和系统的PC模拟,采用新的概率天气数据。这些评估将为设计师和政策制定者提供指导方针,以帮助减少建筑物温室气体(GHG)的增长,目前约占英国排放量的50%。其他学术成果将为拟议的基于PC和手动的一致设计方法提供理论基础,这些方法具有一致的概率性未来天气数据参数,如太阳辐射,气温,风速和风向。众所周知,太阳辐射和气温在不同的时间和不同的日子有峰值,但目前的设计方法确实必须将它们分开,因此经常发生超设计。一个相关的学术成果将是一个理论,支持拟议的新设计参考年(DRY)的选择,这将有助于建筑设计(包括被动和主动加热和冷却系统和舒适度评估)在PC上进行模拟。DRY将取代目前不令人满意的设计夏季年。HadRM 3和UKCIP 02模型中没有详细介绍的太阳辐射数据将被开发以满足设计师的要求。同样,风的数据(包括风驱动自然通风的关键),尽管置信水平会较低。由于排水和雨水渗透破坏,降雨持续时间和数量在建筑物设计过程中也很重要,设计师的要求将再次审查。本指南中简要提到的“城市热岛”效应(城市地区通常比附近的农村地区更热)将被纳入新的数据中,在SCORCHIO工作的基础上发展,以提供更真实的城市天气数据。本地修改或缩小规模也将用于生成英国其他研究中心的数据。这将使新指南能够涵盖超过目前曼彻斯特为CIBSE开发数据的14个站点。为了确保新的概率输出对专业人士有用,并反映设计中的最佳实践,将通过成立利益相关者小组,包括通信成员,包括CIBSE,建筑师和软件公司以及房屋建筑商,加强利益相关者的参与。政策利益将通过社区和地方政府部、DEFRA及其承包商(如BRE)达成。将与曼彻斯特领导的EPSRC SCORCHIO城市热岛和气候变化项目、UKCIP和廷德尔中心建立联系。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use of Adaptive Comfort Degree-Days to compare energy savings from adaptive comfort standards for future UK climates
使用自适应舒适度天数来比较未来英国气候的自适应舒适标准的节能效果
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Sukumar Natarajan
- 通讯作者:Sukumar Natarajan
Comparison of energy savings achievable by adaptive comfort standards using the Adaptive Comfort Degree Day
使用自适应舒适度日比较自适应舒适标准可实现的节能效果
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Sukumar Natarajan
- 通讯作者:Sukumar Natarajan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sukumar Natarajan其他文献
Improving the shelter design process via a shelter assessment matrix
- DOI:
10.1016/j.pdisas.2024.100354 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Noorullah Kuchai;Dima Albadra;Steve Lo;Sara Saied;Natalia Paszkiewicz;Paul Shepherd;Sukumar Natarajan;John Orr;Jason Hart;Kemi Adeyeye;David Coley - 通讯作者:
David Coley
Data-driven approach to generate test reference year weather files for building energy simulations
用于生成建筑能源模拟测试参考年气象文件的数据驱动方法
- DOI:
10.1016/j.jobe.2025.113218 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:7.400
- 作者:
Shweta Lall;Elangovan Rajasekar;Dhyan Singh Arya;Sukumar Natarajan - 通讯作者:
Sukumar Natarajan
Resistive and capacitive technology recipes for peak cooling load reductions in the global south
用于全球南方峰值冷却负荷减少的电阻和电容技术配方
- DOI:
10.1016/j.jobe.2023.105900 - 发表时间:
2023-05-15 - 期刊:
- 影响因子:7.400
- 作者:
Woong June Chung;Sanober Hassan Khattak;Francesca Cecinati;Su-Gwang Jeong;Tristan Kershaw;Steve Allen;Cheol-Soo Park;David Coley;Sukumar Natarajan - 通讯作者:
Sukumar Natarajan
Sukumar Natarajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sukumar Natarajan', 18)}}的其他基金
Zero Peak Energy Building Design for India (ZED-i)
印度零峰值能源建筑设计 (ZED-i)
- 批准号:
EP/R008612/1 - 财政年份:2017
- 资助金额:
$ 12.92万 - 项目类别:
Research Grant
相似海外基金
CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
- 批准号:
2238375 - 财政年份:2023
- 资助金额:
$ 12.92万 - 项目类别:
Standard Grant
Probabilistic Models for Infrastructure Risk Assessment and Management in the Changing Climate
气候变化中基础设施风险评估和管理的概率模型
- 批准号:
RGPIN-2022-03556 - 财政年份:2022
- 资助金额:
$ 12.92万 - 项目类别:
Discovery Grants Program - Individual
Development of probabilistic risk assessment method using climate ensembles to consider both flood and drought disasters
开发利用气候集合考虑洪水和干旱灾害的概率风险评估方法
- 批准号:
21J01854 - 财政年份:2021
- 资助金额:
$ 12.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of probabilistic risk assessment method for aquatic environmental disasters based on large ensemble climate forecast data
基于大集合气候预报数据的水生环境灾害概率风险评估方法开发
- 批准号:
21K04276 - 财政年份:2021
- 资助金额:
$ 12.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
- 批准号:
2151651 - 财政年份:2021
- 资助金额:
$ 12.92万 - 项目类别:
Standard Grant
Developing probabilistic precipitation datasets for high mountain regions in a changing climate
开发气候变化下高山地区的概率降水数据集
- 批准号:
2446322 - 财政年份:2020
- 资助金额:
$ 12.92万 - 项目类别:
Studentship
Probabilistic and the largest-class evaluation of water-related disaster risk using large ensemble of future climate projections
利用未来气候预测的大集合对与水有关的灾害风险进行概率和最大规模评估
- 批准号:
17H01294 - 财政年份:2017
- 资助金额:
$ 12.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
High-Resolution Probabilistic Climate Projections for the Great Lakes Basin
五大湖盆地高分辨率概率气候预测
- 批准号:
486886-2016 - 财政年份:2017
- 资助金额:
$ 12.92万 - 项目类别:
Postdoctoral Fellowships
High-Resolution Probabilistic Climate Projections for the Great Lakes Basin
五大湖盆地高分辨率概率气候预测
- 批准号:
486886-2016 - 财政年份:2016
- 资助金额:
$ 12.92万 - 项目类别:
Postdoctoral Fellowships
Collaborative Research EAGER-NEON: Probabilistic Forecasting of Biodiversity Response to Intensifying Drought by Combining NEON, National Climate, Species, and Trait Data Bases
合作研究 EAGER-NEON:结合 NEON、国家气候、物种和性状数据库,对生物多样性对加剧干旱的反应进行概率预测
- 批准号:
1550907 - 财政年份:2015
- 资助金额:
$ 12.92万 - 项目类别:
Standard Grant