Meniscus Repair with a Novel Aligned Nanofiber Scaffold
使用新型对齐纳米纤维支架修复半月板
基本信息
- 批准号:7446654
- 负责人:
- 金额:$ 6.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAnisotropyBindingBiochemicalBlood VesselsCaliberCellsCellular MorphologyCicatrixCollagenConditionCultured CellsDepositionEngineeringEnvironmentExtracellular MatrixFiberGene ExpressionGrowthGuided Tissue RegenerationHealedKneeLeadMechanicsMeniscus structure of jointMesenchymal Stem CellsNatureNumbersPatientsPatternPolymersProcessPropertyRadialRelative (related person)SiteStructureStructure-Activity RelationshipTimeTissue EngineeringTissuesTraumaWorkarticular cartilagebiodegradable polymercell typeclinical applicationdesignfunctional restorationhealingimprovedin vivointerfacialnanofibernovelpreconditioningrepairedscaffoldtissue support frame
项目摘要
To augment natural healing processes of the knee menisci, tissue engineering creates new tissues via the
combination of cells with biodegradable scaffolds. Under optimal conditions, a scaffold for tissue
engineering would guide tissue regeneration as well as provide mechanical support during the healing
process. Using an electrospinning process, random, non-aligned, nanofibrous scaffolds may be created
from a variety of polymers. These meshes have fiber diameters similar to that of the native extracellular
matrix (ECM) and support the attachment and growth of a number of cell types. This process may be further
modified to create scaffolds possessing a defined fiber alignment; thereby producing a multidimensional
nanofibrous micro-pattern for directed tissue growth. Such scaffolds possess both controllable and
anisotropic mechanical properties and can direct cellular morphology. The overall objective of this proposal
is to use rational design principles that incorporate the structure-function relationships of the meniscus to
improve upon natural repair processes. Specifically, we suggest the application of a novel fiber-aligned
nanofibrous biodegradable scaffold for use in meniscus tissue engineering and propose the following:
Hypothesis 1: Compared to non-aligned constructs, fiber-aligned biodegradable nanofibrous meshes
seeded with meniscus fibrochondrocytes (MFCs) or mesenchymal stem cells (MSCs) will maintain their
anisotropic mechanical properties during tissue maturation and newly deposited ECM will align with the fiber
direction. These aligned meshes will enhance the expression and deposition of fibrocartilaginous ECM
molecules (type I and II collagen) and the resulting tensile properties of these constructs will be greater than
that achieved by cells grown on non-aligned meshes, even after the polymeric component has degraded.
Hypothesis 2: As a new matrix is deposited between the native tissue and the scaffold, the strength of the
engineered interface will increase. The interface will be stronger when utilizing scaffolds aligned with the
native tissue fiber direction, with interracial ECM deposited parallel to native fibers. As the meniscus is
hypocellular, prior seeding of meshes with MFCs or MSCs will expedite interface formation. Pre-culture of
cell-laden scaffolds prior to forming meniscus-scaffold composites will further expedite interface formation.
These studies will validate the hypothesis that novel fiber-aligned biodegradable meshes will enhance the
quality of engineered meniscal tissue by dictating anisotropy in the forming matrix. This work will also
demonstrate the enhancement of scaffold integration to native tissue via pre-culture of fibrocartilaginous cells
on an aligned scaffold. Finally, these studies will define parameters for further explorations of mechanical
preconditioning of constructs, will lay the groundwork for in vivo animal studies, and will ultimately lead to the
clinical application of new repair strategies to restore function in patients with meniscal tears.
为了增强半月板的自然愈合过程,组织工程学通过
细胞与可生物降解支架的结合。在最佳条件下,组织支架
工程学将指导组织再生,并在愈合过程中提供机械支持
进程。使用电纺工艺,可以产生随机的、无排列的、纳米纤维支架
从各种聚合物中提取。这些网状物的纤维直径与天然细胞外的纤维直径相似
基质(ECM),并支持多种细胞类型的附着和生长。这一过程可能会进一步
经修改以产生具有定义的纤维取向的支架;从而产生多维的
用于定向组织生长的纳米纤维微图案。这种支架具有可控性和可控性
各向异性的力学性能和可以直接指导细胞的形态。这项提案的总体目标是
是使用合理的设计原则,结合半月板的结构-功能关系来
改进自然修复过程。具体地说,我们建议应用一种新型的纤维定向
用于半月板组织工程的纳米纤维可生物降解支架,并提出如下建议:
假设1:与非排列结构相比,纤维排列的可生物降解的纳米纤维网
种植半月板纤维软骨细胞(MFC)或间充质干细胞(MSCs)将保持其
组织成熟过程中的各向异性机械性能和新沉积的ECM将与纤维对齐
方向。这些排列的网状物将促进纤维软骨细胞外基质的表达和沉积。
分子(I型和II型胶原)以及由此产生的这些构造物的拉伸性能将大于
这是通过生长在非排列网格上的细胞实现的,即使在聚合物成分已经降解之后也是如此。
假设2:当新的基质沉积在天然组织和支架之间时,
工程接口将增加。当使用与
天然组织纤维方向,界面ECM平行于天然纤维沉积。就像半月板
用MFC或MSCs预先播种低细胞的网状物将加速界面的形成。预培养
在形成半月板-支架复合材料之前,负载细胞的支架将进一步加速界面的形成。
这些研究将验证这样的假设,即新型纤维排列的生物可降解网状物将增强
通过规定形成基质中的各向异性来确定工程半月板组织的质量。这项工作还将
通过预培养纤维软骨细胞增强支架与天然组织的结合
在排列整齐的脚手架上。最后,这些研究将为进一步的力学探索确定参数
结构的预适应,将为体内动物研究奠定基础,并最终将导致
半月板撕裂患者修复功能新策略的临床应用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert L Mauck其他文献
Robert L Mauck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert L Mauck', 18)}}的其他基金
Activation of endogenous progenitors via a nanoparticle-conjugated fibrous system to enhance meniscus repair
通过纳米颗粒共轭纤维系统激活内源祖细胞以增强半月板修复
- 批准号:
10607306 - 财政年份:2023
- 资助金额:
$ 6.86万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10704534 - 财政年份:2020
- 资助金额:
$ 6.86万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10248368 - 财政年份:2020
- 资助金额:
$ 6.86万 - 项目类别:
Hydrogel Delivery of Extracellular Vesicles to Treat Osteoarthritis
水凝胶递送细胞外囊泡治疗骨关节炎
- 批准号:
10631851 - 财政年份:2020
- 资助金额:
$ 6.86万 - 项目类别:
Hydrogel Delivery of Extracellular Vesicles to Treat Osteoarthritis
水凝胶递送细胞外囊泡治疗骨关节炎
- 批准号:
10176189 - 财政年份:2020
- 资助金额:
$ 6.86万 - 项目类别:
Knee Joint Resurfacing with Anatomic Tissue Engineered Osteochondral Implants
使用解剖组织工程骨软骨植入物进行膝关节表面置换
- 批准号:
10454898 - 财政年份:2020
- 资助金额:
$ 6.86万 - 项目类别:
Mechanobiology of Progenitor Cells in Heterotopic Ossification
异位骨化中祖细胞的力学生物学
- 批准号:
10401824 - 财政年份:2018
- 资助金额:
$ 6.86万 - 项目类别:
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 6.86万 - 项目类别:
Standard Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 6.86万 - 项目类别:
Continuing Grant
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
- 批准号:
2342129 - 财政年份:2024
- 资助金额:
$ 6.86万 - 项目类别:
Continuing Grant
CEDAR: Evaluating Ion Temperature Anisotropy in the Weakly Collisional F-region Ionosphere
CEDAR:评估弱碰撞 F 区电离层中的离子温度各向异性
- 批准号:
2330254 - 财政年份:2023
- 资助金额:
$ 6.86万 - 项目类别:
Standard Grant
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
- 批准号:
23K17398 - 财政年份:2023
- 资助金额:
$ 6.86万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Origin of intracellular anisotropy investigated by FCS utilizing spatial information
利用空间信息的 FCS 研究细胞内各向异性的起源
- 批准号:
23K05776 - 财政年份:2023
- 资助金额:
$ 6.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
- 批准号:
2240506 - 财政年份:2023
- 资助金额:
$ 6.86万 - 项目类别:
Continuing Grant
Synchrotron deformation experiments of olivine under the deep upper mantle conditions: Transient creep, plastic anisotropy, and the role of grain-boundary sliding.
上地幔深部条件下橄榄石的同步加速变形实验:瞬态蠕变、塑性各向异性和晶界滑动的作用。
- 批准号:
2322719 - 财政年份:2023
- 资助金额:
$ 6.86万 - 项目类别:
Continuing Grant
Advanced Research into Crystallographic Anisotropy & Nucleation Effects in single crystals (ARCANE)
晶体各向异性的高级研究
- 批准号:
EP/X025454/1 - 财政年份:2023
- 资助金额:
$ 6.86万 - 项目类别:
Research Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 6.86万 - 项目类别:
Continuing Grant














{{item.name}}会员




