Localisation on quotients by non-reductive group actions and global singularity theory
非还原群作用和全局奇点理论对商的局部化
基本信息
- 批准号:EP/G000174/1
- 负责人:
- 金额:$ 30.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research lies in algebraic geometry with applications in singularity theory, and uses methods of algebraic topology. It aims to extend earlier research by the proposed PDRA in global singularity theory, which involves actions of certain non-reductive algebraic groups which occur as diffeomorphism groups. The goal of the proposed project is to extend these ideas, using recent and current research by the PI and her collaborator Doran towards a general theory for constructing quotient spaces for non-reductive group actions in algebraic geometry.Algebraic geometry combines techniques of abstract algebra with the language and intuition of geometry. It occupies a central place in modern mathematics and also has multiple connections with physics, for example through gauge theory and string theory. The central objects of algebraic geometry are polynomial equations in many variables: algebraic geometers attempt to understand the totality of the solutions of such a system of equations. Topology also plays a key role in this project, especially localisation methods in algebraic topology. The motivating insight behind topology is that answers to many geometric problems depend not on the precise shape of the objects involved, but rather on a much looser concept of shape; combining the fine tools of algebraic geometry with topological approaches has resulted in many important results. The remaining crucial ingredient in this project is symmetry: that is, group actions. Symmetries are of fundamental importance throughout much of mathematics and physics, in particular in algebraic geometry and topology. The set of fixed points of a group action often stores significant information about the topology of a space; this is the basis for the localisation theorems to be used in this project in order to study the topology of quotient spaces in algebraic geometry. Quotient spaces are often fundamental in the construction and understanding of moduli spaces (parameter spaces for families of geometric objects), which is one of the central problems of algebraic geometry, and is of great importance in related areas of geometry and of theoretical physics.The main objects of study in global singularity theory are maps between manifolds. In singularity theory, in order to understand global maps, we study local maps between Euclidean spaces, but it is necessary to take account of changes of coordinates. Thus it is important to understand the local diffeomorphism groups, which are highly complicated, infinite-dimensional, non-reductive groups, and to take appropriate quotients by their actions. The proposed PDRA has constructed an iterated residue formula for certain associated invariants called multidegrees, for an important class of singularities called Morin singularities. This project aims to use localisation methods to find similar iterated residue formulas for much more general non-reductive quotients, and to apply them in global singularity theory to more general situations than that of Morin singularities.
拟议的研究在于代数几何与奇异性理论的应用,并使用代数拓扑的方法。它的目的是扩展早期的研究所提出的PDRA在全球奇异性理论,其中涉及的行动,某些非约化代数群发生的非同态群。该项目的目标是扩展这些想法,利用PI和她的合作者Doran最近和当前的研究,为代数几何中的非约化群作用构建商空间的一般理论。代数几何结合了抽象代数的技术和几何的语言和直觉。它在现代数学中占据中心地位,并且与物理学有着多种联系,例如通过规范理论和弦理论。代数几何的中心对象是多变量的多项式方程:代数几何学家试图理解这样一个方程组的全部解。拓扑学在这个项目中也起着关键作用,特别是代数拓扑中的局部化方法。拓扑学背后的启发性见解是,许多几何问题的答案并不依赖于所涉及对象的精确形状,而是依赖于一个更松散的形状概念;将代数几何的精细工具与拓扑方法相结合,产生了许多重要的结果。这个项目中剩下的关键因素是对称性:也就是群体行动。对称性在许多数学和物理学中具有根本的重要性,特别是在代数几何和拓扑学中。一个群作用的不动点集通常存储了关于空间拓扑的重要信息;这是本项目中为了研究代数几何中商空间的拓扑而使用的局部化定理的基础。商空间通常是构造和理解模空间(几何对象族的参数空间)的基础,模空间是代数几何的中心问题之一,在几何和理论物理的相关领域也非常重要。整体奇点理论的主要研究对象是流形之间的映射。在奇点理论中,为了理解整体映射,我们研究欧氏空间之间的局部映射,但必须考虑坐标的变化。因此,理解局部自同构群是非常复杂的、无限维的、非约化的群,并通过它们的作用取适当的自同构是很重要的。拟议的PDRA已经构建了一个迭代剩余公式,某些相关的不变量称为multidegrees,一类重要的奇异性称为Morin奇点。这个项目的目的是使用本地化的方法来找到类似的迭代剩余公式更一般的非约化的等价物,并将它们应用于全球奇点理论更一般的情况下,比莫林奇点。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variation of non-reductive geometric invariant theory
非还原几何不变量理论的变体
- DOI:10.4310/sdg.2017.v22.n1.a2
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bérczi G
- 通讯作者:Bérczi G
On the Popov-Pommerening conjecture for linear algebraic groups
关于线性代数群的 Popov-Pommerening 猜想
- DOI:10.1112/s0010437x17007473
- 发表时间:2017
- 期刊:
- 影响因子:1.8
- 作者:Bérczi G
- 通讯作者:Bérczi G
Thom polynomials of Morin singularities
Morin 奇点的 Thom 多项式
- DOI:10.4007/annals.2012.175.2.4
- 发表时间:2012
- 期刊:
- 影响因子:4.9
- 作者:Bérczi G
- 通讯作者:Bérczi G
Towards the Green-Griffiths-Lang conjecture via equivariant localisation
通过等变局部化推向 Green-Griffiths-Lang 猜想
- DOI:10.1112/plms.12197
- 发表时间:2018
- 期刊:
- 影响因子:1.8
- 作者:Bérczi G
- 通讯作者:Bérczi G
Geometric invariant theory for graded unipotent groups and applications GEOMETRIC INVARIANT THEORY FOR GRADED UNIPOTENT GROUPS
分级单能群的几何不变理论及其应用 分级单能群的几何不变理论
- DOI:10.1112/topo.12075
- 发表时间:2018
- 期刊:
- 影响因子:1.1
- 作者:Bérczi G
- 通讯作者:Bérczi G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frances Kirwan其他文献
Implosion, Contraction and Moore-Tachikawa
内爆、收缩和摩尔-立川
- DOI:
10.1142/s0129167x24410040 - 发表时间:
2024 - 期刊:
- 影响因子:0.6
- 作者:
A. Dancer;Frances Kirwan;Johan Martens - 通讯作者:
Johan Martens
Cohomology pairings on singular quotients in geometric invariant theory
- DOI:
10.1007/s00031-003-0510-y - 发表时间:
2003-09-01 - 期刊:
- 影响因子:0.400
- 作者:
Lisa C. Jeffrey;Young-Hoon Kiem;Frances Kirwan;Jonathan Woolf - 通讯作者:
Jonathan Woolf
Frances Kirwan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frances Kirwan', 18)}}的其他基金
相似海外基金
Centralisers, fixed sets and extended quotients for Weyl groups with applications to equivariant K-theory
Weyl 群的集中器、固定集和扩展商及其在等变 K 理论中的应用
- 批准号:
2770079 - 财政年份:2022
- 资助金额:
$ 30.37万 - 项目类别:
Studentship
Structure theorem for varieties of special type focusing on rational connected fibrations and its application to classification theory
关注有理连接纤维的特殊类型品种结构定理及其在分类理论中的应用
- 批准号:
21H00976 - 财政年份:2021
- 资助金额:
$ 30.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quotients in algebraic geometry
代数几何中的商
- 批准号:
RGPIN-2014-06117 - 财政年份:2020
- 资助金额:
$ 30.37万 - 项目类别:
Discovery Grants Program - Individual
Study on symplectic quotients concerned with decompositions of representations of Lie groups
与李群表示分解有关的辛商的研究
- 批准号:
19K03475 - 财政年份:2019
- 资助金额:
$ 30.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cyclotomic quotients for formal affine Hecke algebras and formal Demazure algebras of type A
A 型形式仿射 Hecke 代数和形式 Demazure 代数的分圆商
- 批准号:
545249-2019 - 财政年份:2019
- 资助金额:
$ 30.37万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Quotients in algebraic geometry
代数几何中的商
- 批准号:
RGPIN-2014-06117 - 财政年份:2017
- 资助金额:
$ 30.37万 - 项目类别:
Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
- 批准号:
41981-2012 - 财政年份:2016
- 资助金额:
$ 30.37万 - 项目类别:
Discovery Grants Program - Individual
Quotients in algebraic geometry
代数几何中的商
- 批准号:
RGPIN-2014-06117 - 财政年份:2016
- 资助金额:
$ 30.37万 - 项目类别:
Discovery Grants Program - Individual
Longitudinal changes in sociality after long-term administration of oxytocin - MEG study
长期服用催产素后社会性的纵向变化 - MEG 研究
- 批准号:
16K19756 - 财政年份:2016
- 资助金额:
$ 30.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on symplectic quotients concerned with branching problems
与分支问题有关的辛商的研究
- 批准号:
16K05137 - 财政年份:2016
- 资助金额:
$ 30.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)