PARALLEL ALGORITHMS FOR MEDICAL IMAGE REGISTRATION

医学图像配准的并行算法

基本信息

  • 批准号:
    7723207
  • 负责人:
  • 金额:
    $ 0.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The objective of this proposal is to develop multiteraflop algorithms the high-accuracy solution of boundary volume problems formulations of elliptic operators defined on complex geometries with inhomogeneous and multiphysics continua. To test the proposed methodologies two specific applications will be examined: fluid-solid interaction problems, and nonlinear electrostatic simulations. These applications involve complicated 3D geometries, nonlinear operators and multiphysics coupling. Their solution presents outstanding algorithmic and parallel scalability challenges. There is extensive work on the theory and computation of elliptic operators. The main computational tools for large scale, high-fidelity simulations are multigrid and domain decomposition methods for grid-based discretizations. A different class of algorithms is based on Cartesian grids, but does not readily extend to scalable algorithms for problems with dynamic interfaces. Another category of solvers is based on integral equation formulations. The features of integral equation solvers are optimal algorithmic complexity, parallel scalability, superalgebraic accuracy, and robustness. This research will capitalize on recent work of the PI on kernel-independent fast multipole methods that allowed simulations with several different elliptic operators for problems with up to 2.1 billion unknowns and on up to 3000 processors, achieving a sustained 1 Teraflop/s efficiency (SC05). In addition the PI's group has developed a massively parallel octree construction and 2:1 balance refinement algorithm. The PI has extensive experience in using PSC resources. He has been an active user for the last ten years.
这个子项目是众多研究子项目之一

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Biros其他文献

George Biros的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Biros', 18)}}的其他基金

Neuroimage-driven biophysical inverse problems for atrophy and tau propagation
神经图像驱动的萎缩和 tau 传播的生物物理逆问题
  • 批准号:
    10302105
  • 财政年份:
    2021
  • 资助金额:
    $ 0.05万
  • 项目类别:
PARALLEL ALGORITHMS FOR MEDICAL IMAGE REGISTRATION
医学图像配准的并行算法
  • 批准号:
    7601470
  • 财政年份:
    2007
  • 资助金额:
    $ 0.05万
  • 项目类别:

相似海外基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
The geometry of braids and triangulated categories
辫子的几何形状和三角类别
  • 批准号:
    DE240100447
  • 财政年份:
    2024
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Discovery Early Career Researcher Award
Constructing and Classifying Pre-Tannakian Categories
前坦纳克阶范畴的构建和分类
  • 批准号:
    2401515
  • 财政年份:
    2024
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Towards Directed Model Categories
走向有向模型类别
  • 批准号:
    EP/Y033418/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Research Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
  • 批准号:
    2401184
  • 财政年份:
    2024
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
  • 批准号:
    DP240101934
  • 财政年份:
    2024
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Discovery Projects
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Eco Warrior: Expanding to new Plastic Free Categories
生态战士:扩展到新的无塑料类别
  • 批准号:
    10055912
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Grant for R&D
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
  • 批准号:
    2316538
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Fellowship Award
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了