Artificial Metabolons: Models for proximity-driven control over multienzyme pathw
人工代谢:邻近驱动控制多酶路径的模型
基本信息
- 批准号:7784540
- 负责人:
- 金额:$ 42.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAntineoplastic AgentsArchitectureBindingBiologicalBiological ModelsCell modelCell physiologyCellsComplementComplexComputer SimulationCrowdingCytoplasmCytoskeletonCytosolDataDiffusionDissociationDrug DesignElementsEnvironmentEnzymesExperimental ModelsHis-His-His-His-His-HisIn VitroInvestigationKineticsKnowledgeLeadLipid BilayersLipidsMeasuresMetabolicMetabolic PathwayMetabolismModelingMono-SMultienzyme ComplexesPathway interactionsPositioning AttributePreparationPurinesRelative (related person)ReportingSolutionsStructureTestingVesicleWorkaqueousbasecancer therapydesignenzyme substratehis6 tagimprovedin vivoinhibitor/antagonistinsightmodel designmonolayernanoparticulatenon-geneticnovel strategiespublic health relevancepurineresponsescaffoldstoichiometrysuccess
项目摘要
DESCRIPTION (provided by applicant): The sequential enzymes that make up metabolic pathways often exist in close association with one another within the cell. Such co-localization provides a means of metabolic compartmentation, and is thought to be crucial for cell function. However, because these multienzyme complexes ("metabolons") are quite challenging to study in vivo or to isolate without disruption in vitro, the kinetic consequences of proximity for sequential enzymes have been difficult to characterize. We will test the hypothesis that metabolic pathways can be regulated by altering enzyme localization and association. To do this, we will employ a "bottom up" approach, by constructing experimental model systems in which enzyme proximity is controlled to mimic stable or transient interactions. Results from these artificial metabolons will be compared with (i) computational models and (ii) the purinosome, one of the biological metabolons that inspires the models. Two Aims are proposed: Aim 1. Models for metabolic compartmentation. We will attach sequential enzymes from the de novo purine biosynthesis pathway to scaffolds in mono- and multilayered geometries, characterize the structure and kinetics of these artificial metabolons, and compare the experimental kinetic results to non-localized controls and to predictions from computational models. Aim 2. Investigation of metabolic compartmentation in experimental and computational model cells. Metabolic compartmentation models similar to those of Aim 1 will be incorporated within microscale cell models designed to capture key features of the intracellular environment, including hindered diffusion, limited volume, and finite numbers of substrate and enzyme molecules. Experimental results in microvolumes will be compared with bulk solution data from Aim 1 and with computational models. Together, this work will provide new insight into the possible advantages of spatial organization in multienzyme pathways. Our findings will complement in vivo and in vitro studies of biological metabolons and will provide information on possible kinetic advantages of co-localization. Impacts of this work will include improved understanding of metabolons generally, and of purinosome enzyme co-localization in particular. Ultimately, this understanding may lead to entirely new approaches for controlling these pathways. For example, the de novo purine biosynthesis pathway is an important target for anticancer drug design; success of the work proposed here could therefore lead to new cancer treatments based on disrupting the formation of enzyme complexes. We anticipate that co-localization will become as important a target for drug design as inhibitors for specific enzymes. PUBLIC HEALTH RELEVANCE: Project Narrative This work will provide new insight into the possible advantages of spatial organization in multienzyme pathways. For example, the ten-step de novo purine biosynthesis pathway is an important target for anticancer drug design. Knowledge gained from the model systems proposed here will help guide in vivo work on this pathway, which could ultimately lead to new cancer treatments based on disrupting the formation of enzyme complexes.
描述(由申请人提供):构成代谢途径的连续酶通常在细胞内彼此密切相关。这种共定位提供了一种代谢区室化的手段,并且被认为对细胞功能至关重要。然而,因为这些多酶复合物(“代谢子”)是相当具有挑战性的研究在体内或分离而不破坏在体外,连续酶的动力学后果的接近已难以表征。我们将测试的假设,代谢途径可以通过改变酶的定位和协会进行调节。为此,我们将采用“自下而上”的方法,通过构建实验模型系统,在该系统中,控制酶的接近度以模拟稳定或瞬时的相互作用。这些人工代谢子的结果将与(i)计算模型和(ii)嘌呤体(激发模型的生物代谢子之一)进行比较。提出了两个目标:目标1。代谢区室模型。我们将从从头嘌呤生物合成途径的连续酶的支架在单和多层的几何形状,表征这些人工代谢的结构和动力学,并比较实验动力学结果,非本地化的控制和预测计算模型。目标2.实验和计算模型细胞中代谢区室化的研究。与Aim 1相似的代谢区室模型将被纳入微尺度细胞模型,旨在捕获细胞内环境的关键特征,包括受阻扩散、有限体积和有限数量的底物和酶分子。微体积的实验结果将与目标1的本体溶液数据和计算模型进行比较。总之,这项工作将提供新的见解,空间组织在多酶途径的可能优势。我们的研究结果将补充在体内和体外研究的生物代谢,并将提供信息的共定位可能的动力学优势。这项工作的影响将包括改善一般的代谢,特别是嘌呤体酶的共定位的理解。最终,这种理解可能会带来控制这些途径的全新方法。例如,从头嘌呤生物合成途径是抗癌药物设计的重要目标;因此,本文提出的工作的成功可能导致基于破坏酶复合物形成的新癌症治疗。我们预计,共定位将成为药物设计的重要目标,作为特定酶的抑制剂。公共卫生相关性:项目叙述这项工作将提供新的洞察空间组织在多酶途径的可能优势。例如,十步从头嘌呤生物合成途径是抗癌药物设计的重要靶标。从本文提出的模型系统中获得的知识将有助于指导该途径的体内工作,这可能最终导致基于破坏酶复合物形成的新癌症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTINE D KEATING其他文献
CHRISTINE D KEATING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTINE D KEATING', 18)}}的其他基金
Artificial Metabolons: Models for proximity-driven control over multienzyme pathw
人工代谢:邻近驱动控制多酶路径的模型
- 批准号:
8050042 - 财政年份:2009
- 资助金额:
$ 42.2万 - 项目类别:
Artificial Metabolons: Models for proximity-driven control over multienzyme pathw
人工代谢:邻近驱动控制多酶路径的模型
- 批准号:
8237005 - 财政年份:2009
- 资助金额:
$ 42.2万 - 项目类别:
Barcoded Nanowires for Multiplexed Clinical Diagnostics
用于多重临床诊断的条形码纳米线
- 批准号:
7568727 - 财政年份:2000
- 资助金额:
$ 42.2万 - 项目类别:
Barcoded Nanowires for Multiplexed Clinical Diagnostics
用于多重临床诊断的条形码纳米线
- 批准号:
7096320 - 财政年份:2000
- 资助金额:
$ 42.2万 - 项目类别:
Barcoded Nanowires for Multiplexed Clinical Diagnostics
用于多重临床诊断的条形码纳米线
- 批准号:
7210612 - 财政年份:2000
- 资助金额:
$ 42.2万 - 项目类别:
ULTRARAPID DNA SEQUENCING BY SURFACE PLASMON RESONANCE
通过表面等离子体共振进行超快速 DNA 测序
- 批准号:
6181830 - 财政年份:1999
- 资助金额:
$ 42.2万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 42.2万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 42.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 42.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 42.2万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 42.2万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 42.2万 - 项目类别: