Artificial Metabolons: Models for proximity-driven control over multienzyme pathw
人工代谢:邻近驱动控制多酶路径的模型
基本信息
- 批准号:8237005
- 负责人:
- 金额:$ 38.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAntineoplastic AgentsArchitectureBindingBiologicalBiological ModelsCell modelCell physiologyCellsComplementComplexComputer SimulationCrowdingCytoplasmCytoskeletonCytosolDataDiffusionDissociationDrug DesignElementsEnvironmentEnzymesExperimental ModelsHealthHis-His-His-His-His-HisIn VitroInvestigationKineticsKnowledgeLeadLipid BilayersLipidsMeasuresMetabolicMetabolic PathwayMetabolismModelingMultienzyme ComplexesPathway interactionsPositioning AttributePreparationPurinesRelative (related person)ReportingSolutionsStructureTestingVesicleWorkaqueousbasecancer therapydesignenzyme substratehis6 tagimprovedin vivoinhibitor/antagonistinsightmodel designmonolayernanoparticulatenon-geneticnovel strategiespurineresponsescaffoldstoichiometrysuccess
项目摘要
DESCRIPTION (provided by applicant): The sequential enzymes that make up metabolic pathways often exist in close association with one another within the cell. Such co-localization provides a means of metabolic compartmentation, and is thought to be crucial for cell function. However, because these multienzyme complexes ("metabolons") are quite challenging to study in vivo or to isolate without disruption in vitro, the kinetic consequences of proximity for sequential enzymes have been difficult to characterize. We will test the hypothesis that metabolic pathways can be regulated by altering enzyme localization and association. To do this, we will employ a "bottom up" approach, by constructing experimental model systems in which enzyme proximity is controlled to mimic stable or transient interactions. Results from these artificial metabolons will be compared with (i) computational models and (ii) the purinosome, one of the biological metabolons that inspires the models. Two Aims are proposed: Aim 1. Models for metabolic compartmentation. We will attach sequential enzymes from the de novo purine biosynthesis pathway to scaffolds in mono- and multilayered geometries, characterize the structure and kinetics of these artificial metabolons, and compare the experimental kinetic results to non-localized controls and to predictions from computational models. Aim 2. Investigation of metabolic compartmentation in experimental and computational model cells. Metabolic compartmentation models similar to those of Aim 1 will be incorporated within microscale cell models designed to capture key features of the intracellular environment, including hindered diffusion, limited volume, and finite numbers of substrate and enzyme molecules. Experimental results in microvolumes will be compared with bulk solution data from Aim 1 and with computational models. Together, this work will provide new insight into the possible advantages of spatial organization in multienzyme pathways. Our findings will complement in vivo and in vitro studies of biological metabolons and will provide information on possible kinetic advantages of co-localization. Impacts of this work will include improved understanding of metabolons generally, and of purinosome enzyme co-localization in particular. Ultimately, this understanding may lead to entirely new approaches for controlling these pathways. For example, the de novo purine biosynthesis pathway is an important target for anticancer drug design; success of the work proposed here could therefore lead to new cancer treatments based on disrupting the formation of enzyme complexes. We anticipate that co-localization will become as important a target for drug design as inhibitors for specific enzymes. PUBLIC HEALTH RELEVANCE: Project Narrative This work will provide new insight into the possible advantages of spatial organization in multienzyme pathways. For example, the ten-step de novo purine biosynthesis pathway is an important target for anticancer drug design. Knowledge gained from the model systems proposed here will help guide in vivo work on this pathway, which could ultimately lead to new cancer treatments based on disrupting the formation of enzyme complexes.
描述(由申请人提供):构成代谢途径的连续酶通常在细胞内彼此紧密联系。这种共定位提供了一种代谢区隔的方法,被认为是细胞功能的关键。然而,由于这些多酶复合体(“代谢物”)在体内研究或在体外不受干扰地分离相当具有挑战性,因此很难表征连续酶的接近的动力学后果。我们将测试代谢途径可以通过改变酶的定位和结合来调节的假设。为了做到这一点,我们将采用“自下而上”的方法,通过构建实验模型系统,在其中控制酶的接近程度来模拟稳定或瞬时的相互作用。这些人工代谢物的结果将与(I)计算模型和(Ii)嘌呤小体进行比较,嘌呤小体是启发模型的生物代谢物之一。提出了两个目标:目标1。代谢区划模型。我们将从从头开始的嘌呤生物合成途径的顺序酶连接到单层和多层几何结构的支架上,表征这些人工代谢物的结构和动力学,并将实验动力学结果与非局域控制和计算模型的预测进行比较。目的2.实验和计算模型细胞中代谢区隔的研究。与AIM 1类似的代谢区隔模型将被纳入微型细胞模型中,旨在捕捉细胞内环境的关键特征,包括扩散受阻、体积有限以及底物和酶分子的有限数量。微体积中的实验结果将与目标1的整体溶液数据和计算模型进行比较。总之,这项工作将为多酶途径中空间组织的可能优势提供新的见解。我们的发现将补充体内和体外对生物代谢物的研究,并将提供关于共定位可能的动力学优势的信息。这项工作的影响将包括提高对代谢物的一般理解,特别是对嘌呤小体酶共定位的理解。最终,这种理解可能会导致控制这些途径的全新方法。例如,从头开始的嘌呤生物合成途径是抗癌药物设计的重要目标;因此,这里提出的工作的成功可能导致基于扰乱酶复合体形成的新的癌症治疗。我们预计共定位将成为药物设计的一个重要目标,就像特定酶的抑制剂一样。公共卫生相关性:项目叙述这项工作将为空间组织在多酶途径中的可能优势提供新的见解。例如,十步从头合成嘌呤的生物合成途径是抗癌药物设计的重要目标。从这里提出的模型系统中获得的知识将有助于指导体内对这一途径的工作,这最终可能导致基于扰乱酶复合体形成的新的癌症治疗。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system.
- DOI:10.1021/jp501126v
- 发表时间:2014-03-06
- 期刊:
- 影响因子:0
- 作者:Aumiller WM Jr;Davis BW;Hashemian N;Maranas C;Armaou A;Keating CD
- 通讯作者:Keating CD
Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions.
原始模型细胞的完整萌芽和不对称分裂,以产生具有不同内部和膜组成的子囊泡。
- DOI:10.1021/ja202406v
- 发表时间:2011-06-22
- 期刊:
- 影响因子:15
- 作者:Andes-Koback, Meghan;Keating, Christine D.
- 通讯作者:Keating, Christine D.
Interactions of macromolecular crowding agents and cosolutes with small-molecule substrates: effect on horseradish peroxidase activity with two different substrates.
- DOI:10.1021/jp506594f
- 发表时间:2014-09-11
- 期刊:
- 影响因子:0
- 作者:Aumiller WM Jr;Davis BW;Hatzakis E;Keating CD
- 通讯作者:Keating CD
Multiphase water-in-oil emulsion droplets for cell-free transcription-translation.
- DOI:10.1021/la404146g
- 发表时间:2014-05-27
- 期刊:
- 影响因子:0
- 作者:Torre P;Keating CD;Mansy SS
- 通讯作者:Mansy SS
Enzyme-gold nanoparticle bioconjugates: quantification of particle stoichiometry and enzyme specific activity.
酶-金纳米颗粒生物结合物:颗粒化学计量和酶比活性的量化。
- DOI:10.1007/978-1-62703-468-5_13
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Keighron,JacquelineD;Keating,ChristineD
- 通讯作者:Keating,ChristineD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTINE D KEATING其他文献
CHRISTINE D KEATING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTINE D KEATING', 18)}}的其他基金
Artificial Metabolons: Models for proximity-driven control over multienzyme pathw
人工代谢:邻近驱动控制多酶路径的模型
- 批准号:
8050042 - 财政年份:2009
- 资助金额:
$ 38.68万 - 项目类别:
Artificial Metabolons: Models for proximity-driven control over multienzyme pathw
人工代谢:邻近驱动控制多酶路径的模型
- 批准号:
7784540 - 财政年份:2009
- 资助金额:
$ 38.68万 - 项目类别:
Barcoded Nanowires for Multiplexed Clinical Diagnostics
用于多重临床诊断的条形码纳米线
- 批准号:
7568727 - 财政年份:2000
- 资助金额:
$ 38.68万 - 项目类别:
Barcoded Nanowires for Multiplexed Clinical Diagnostics
用于多重临床诊断的条形码纳米线
- 批准号:
7096320 - 财政年份:2000
- 资助金额:
$ 38.68万 - 项目类别:
Barcoded Nanowires for Multiplexed Clinical Diagnostics
用于多重临床诊断的条形码纳米线
- 批准号:
7210612 - 财政年份:2000
- 资助金额:
$ 38.68万 - 项目类别:
ULTRARAPID DNA SEQUENCING BY SURFACE PLASMON RESONANCE
通过表面等离子体共振进行超快速 DNA 测序
- 批准号:
6181830 - 财政年份:1999
- 资助金额:
$ 38.68万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 38.68万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 38.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 38.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 38.68万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 38.68万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 38.68万 - 项目类别: