Fast dienophile reactions for in vivo click imaging
用于体内点击成像的快速亲二烯体反应
基本信息
- 批准号:7934959
- 负责人:
- 金额:$ 39.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlkynesAntibodiesAvidityAzidesBindingBiocompatibleBiologicalBiological AssayBiological ModelsCancer DetectionCancerousCell SurvivalCell surfaceCellsChemicalsChemistryClinicalCoculture TechniquesComplexDataDetectionDrug KineticsEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorFluorescenceFluorochromeFreezingGenerationsGeneric DrugsGoalsGoldHourHumanImageIn VitroLabelLeadLifeLigandsMagnetismMalignant NeoplasmsMalignant neoplasm of lungMeasuresMethodsModelingMolecular TargetOrganPreclinical TestingPreparationProdrugsReactionReagentReporterResearchSignal TransductionSourceTechniquesTechnologyTemperatureTestingTimeTissue MicroarrayTissuesToxic effectToxicity TestsValidationWorkbasecancer cellcatalystcell typecostcycloadditioncytotoxicitydesigndrug distributionextracellularin vivoin vivo Modelmolecular imagingnovelpublic health relevancereceptorresearch studyscale upsmall moleculetherapeutic target
项目摘要
DESCRIPTION (provided by applicant): Biological and chemical amplification strategies are key to the design of successful molecular imaging agents. Several such strategies have been described including a) enzymatically activated prodrugs, b) covalent target binding, c) intracellular trapping, d) conformational changes upon target binding, e) pH induced fluorescence or magnetic changes f) increased avidity through multivalency, g) amplifying reporters, h) unnatural biorthogonal chemical reporters and i) pre-targeting. Some of these strategies have been extraordinarily robust but few possess intrinsic selectivity, are universally applicable for different classes of targets or are clinically translatable. One emerging chemical strategy for in vitro bioconjugation has been cycloaddition ("click chemistry"). Unfortunately, conventional reactions (e.g. between and azide and an alkyne) require elevated temperatures, a Cu(I) catalysts to be efficient or are simply too slow for in vivo use. We and others have discovered and tested a number of novel ring constrained reactants as more universal in vivo click reagents. In these reactions, a tetrazine replaces the azide functionality and readily reacts with constrained dienophile ligands. We have shown that the norbornene/ tetrazine click reaction can proceed orders of magnitude faster (in seconds as compared to hours-days with previous azide/alkyne reactions) and that reactions are very selective and specific. In preliminary data we have shown efficacy and compatibility of reactants with live cells. Importantly and extending this concept to transcyclooctenes, we have now shown that the technique works for intracellular targets as well as for extracellular targets. In parallel, proof-of-principle experiments shown that the technology allows in vivo clicking. The goal of this application is to further build on this cutting-edge technology and to develop generic amplifying in vivo click reactions for molecular imaging. In aim 1 we will perform more comprehensive cell based screens to identify lead compounds and conditions for dienophile/tetrazine " fast click reactions. In a second aim we will apply optimized compounds (antibody and/or small molecule conjugated dienophiles and tetrazine-fluorochromes) and conditions to biologically relevant in vivo models and ask a number of questions which may ultimately aid in the more widespread application of the technology: How efficient is in vivo click chemistry and what is the detection threshold in vivo? How does the strategy compare to current gold standards? Can the approach be used to measure EGFR target inhibition? Can the approach be used to quantitative drug distribution? Can the technology be used for multichannel imaging of several molecular targets? These experiments are a logical extension of our preliminary work and will likely result in broad, new imaging platforms.
PUBLIC HEALTH RELEVANCE: The proposed research represents a new method for in vivo imaging of intra- and extracellular targets using biocompatible "click" reactions. The new method is very powerful as it harnesses very selective and specific chemistries and amplification strategies and has most recently been shown to work for intracellular targets as well.
描述(申请人提供):生物和化学扩增策略是设计成功的分子显像剂的关键。已经描述了几种这样的策略,包括a)酶激活的前药,b)共价靶标结合,c)细胞内捕获,d)靶标结合时的构象变化,e)pH诱导的荧光或磁性变化f)通过多价态增加亲和力,g)扩增报告,h)非天然双正交化学报告和i)预靶向。这些策略中有一些非常稳健,但很少具有内在的选择性,对不同类别的靶点普遍适用,或者是临床可翻译的。一种新出现的体外生物偶联的化学策略是环加成(“点击化学”)。不幸的是,传统的反应(例如叠氮化物和炔烃之间的反应)需要更高的温度,铜(I)催化剂要么高效,要么太慢,无法在体内使用。我们和其他人已经发现并测试了一些新的环限制反应物,作为体内更通用的点击试剂。在这些反应中,四氮取代叠氮官能团,很容易与受约束的双烯亲核配体反应。我们已经证明,降冰片烯/四嗪点击反应可以更快地进行数量级(与以前的叠氮/炔反应相比,在几秒钟内进行),并且反应具有非常高的选择性和特异性。在初步数据中,我们已经展示了反应物与活细胞的有效性和兼容性。重要的是,将这一概念扩展到跨环辛烯,我们现在已经表明,该技术不仅适用于细胞外靶标,也适用于细胞内靶标。同时,原理验证实验表明,该技术允许在体内点击。这项应用的目标是进一步建立在这一尖端技术的基础上,并开发用于分子成像的体内非专利放大点击反应。在目标1中,我们将进行更全面的基于细胞的筛选,以确定先导化合物和亲双烯/四嗪“快速点击反应”的条件。在第二个目标中,我们将把优化的化合物(抗体和/或小分子共轭双烯化合物和四嗪荧光素)和条件应用于体内相关的生物模型,并提出一些最终可能有助于该技术更广泛应用的问题:体内点击化学的效率如何,以及体内的检测阈值是多少?与当前的黄金标准相比,这一战略如何?该方法能用来测量EGFR靶点抑制吗?这种方法是否可以用于药品的定量分配?该技术能否用于多个分子靶标的多通道成像?这些实验是我们前期工作的合乎逻辑的延伸,并可能导致广泛的、新的成像平台。
与公共卫生相关:这项拟议的研究代表了一种新的方法,利用生物相容的“点击”反应对细胞内和细胞外的靶标进行体内成像。这种新的方法非常强大,因为它利用了非常选择性和特定的化学和扩增策略,最近被证明也适用于细胞内的靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(5)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RALPH WEISSLEDER, MD, PHD其他文献
RALPH WEISSLEDER, MD, PHD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RALPH WEISSLEDER, MD, PHD', 18)}}的其他基金
Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
- 批准号:
10596786 - 财政年份:2023
- 资助金额:
$ 39.68万 - 项目类别:
Temporal analysis of the GBM tumor microenvironment during myeloid cell activating therapy
骨髓细胞激活治疗期间 GBM 肿瘤微环境的时间分析
- 批准号:
10704328 - 财政年份:2023
- 资助金额:
$ 39.68万 - 项目类别:
Ultrasenstive vesicle analysis in precancerous pancreatic neoplasm (IPMN)
癌前胰腺肿瘤 (IPMN) 的超灵敏囊泡分析
- 批准号:
10615899 - 财政年份:2020
- 资助金额:
$ 39.68万 - 项目类别:
Ultrasenstive vesicle analysis in precancerous pancreatic neoplasm (IPMN)
癌前胰腺肿瘤 (IPMN) 的超灵敏囊泡分析
- 批准号:
10403494 - 财政年份:2020
- 资助金额:
$ 39.68万 - 项目类别:
Single Circulating Vesicle Analysis for Early Cancer Detection
用于早期癌症检测的单循环囊泡分析
- 批准号:
9913496 - 财政年份:2019
- 资助金额:
$ 39.68万 - 项目类别:
Multiplexed analysis of exosomes in cancer nano therapy
癌症纳米疗法中外泌体的多重分析
- 批准号:
9078198 - 财政年份:2016
- 资助金额:
$ 39.68万 - 项目类别:
Multiplexed analysis of exosomes in cancer nano therapy
癌症纳米疗法中外泌体的多重分析
- 批准号:
9487955 - 财政年份:2016
- 资助金额:
$ 39.68万 - 项目类别:
Analysis of scant cancer cells in fine needle aspirates
细针抽吸物中少量癌细胞的分析
- 批准号:
9023623 - 财政年份:2016
- 资助金额:
$ 39.68万 - 项目类别:
Analysis of scant cancer cells in fine needle aspirates
细针抽吸物中少量癌细胞的分析
- 批准号:
9324962 - 财政年份:2016
- 资助金额:
$ 39.68万 - 项目类别:
相似海外基金
Reactions of Alkynes with Metal-Coordinated Phosphenium Ions
炔烃与金属配位磷离子的反应
- 批准号:
573824-2022 - 财政年份:2022
- 资助金额:
$ 39.68万 - 项目类别:
University Undergraduate Student Research Awards
Exploring the missing reactivity of heteroatom-substituted alkynes
探索杂原子取代的炔烃缺失的反应性
- 批准号:
559671-2021 - 财政年份:2022
- 资助金额:
$ 39.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
LEAPS-MPS: Developing a Spectroscopic Map for Terminal Alkynes
LEAPS-MPS:开发末端炔烃的光谱图
- 批准号:
2213339 - 财政年份:2022
- 资助金额:
$ 39.68万 - 项目类别:
Standard Grant
Development of Synthetic Methods for Hetero-fused pi-Conjugated Compounds Based on Trans-Addition to Alkynes
基于炔烃反式加成的异稠合π共轭化合物的合成方法研究进展
- 批准号:
21K05061 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Enantioselective Carboalumination of Alkenes and Alkynes Catalyzed by Rare-Erath Metal Catalysts
稀土金属催化剂催化烯烃和炔烃对映选择性碳铝化反应的研究进展
- 批准号:
21F21334 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10544730 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10320911 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Development of beta-carbon elimination reactions of alkynes from unstrained vinyl complexes
无应变乙烯基配合物中炔烃的β-碳消除反应的进展
- 批准号:
21K05101 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reactions of Alkynes with Metal-Coordinated Phosphenium Ions
炔烃与金属配位磷离子的反应
- 批准号:
563146-2021 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
University Undergraduate Student Research Awards
Highly Selective Catalytic Reactions of Alkenes and Alkynes Relevant to Medicinal and Process Chemistry
与医药和工艺化学相关的烯烃和炔烃的高选择性催化反应
- 批准号:
10581995 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别: