Biologically-Mediated Weathering of minerals from Nanometre Scale to Environmental Systems.
从纳米尺度到环境系统的矿物生物介导风化。
基本信息
- 批准号:NE/C521044/1
- 负责人:
- 金额:$ 55.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In nature, a complex system of physical, chemical and biological processes weather the Earth's surface and transform rock into soil. Because global erosion loss is now much faster (100 times or more) than soil formation, largely as a result of unsustainable cultivation practices, soil has become a finite resource. Despite the importance of soil for sustenance of our planet and it 6 billion human inhabitants, our knowledge of weathering is limited. This is because various scientific approaches are not sufficiently integrated to tackle the many, complex interactions that occur. Therefore a multidisciplinary approach is needed to study soil formation rates and processes. Soil fungi appear to use plant energy to mine nutrients from rock-but the mechanisms involved are uncertain. We want to know if biological weathering is driven by the flow of sugar produced by plant photosynthesis in return for nutrient elements (such as phosphorous, potassium) from the mineral particles. Nearly a third of the total chemical energy (sugar) produced by forest trees passes directly to symbiotic (mutually beneficial) root fungi. These fungi completely cover the tree roots and form extensive networks of living threads through soil. Virtually all nutrients taken up by the trees are absorbed through these fungi. This research programme will identify how fungal cells, and their secretions, interact with mineral surfaces and affect the rates of nutrient transfer from minerals to the organism. Making biological processes central to molecular-level understanding of how minerals dissolve is counter to existing theories. Investigating these fundamental molecular weathering mechanisms in living systems allows us to create new concepts and mathematical models that can describe biological weathering and be used in computer simulations of soil weathering dynamics. We propose to study these biochemical interactions at three levels of observation: 1. At the molecular scale to understand interactions between living cells and minerals and to quantify the chemistry that breaks down the mineral structure, 2. At the soil grain scale to quantify the activity and spatial distribution of the fungi, roots and other organisms (e.g. bacteria) and their effects on the rates at which minerals are dissolved to release nutrients, and 3. At soil profile scale to test models for the spatial distribution of active fungi and carbon energy and their seasonal variability and impact on mineral dissolution rates. We will combine the expertise from many scientific fields. Biologists will work with the fungi and plant cultures in the presence and absence of minerals that are sources of nutrients, and measure carbon energy fluxes in the fungal networks. Surface chemists will use X-Ray and Infrared beams that interact with the cell and mineral surface, and are then measured using sophisticated sensors to provide information on the chemical bonds that can form. Physicists will measure the minuscule forces that operate between fungi cells and minerals surfaces, but determine if fungi actually adhere and form chemical bonds. Materials scientists will use highly specialised visualisation methods to observe the shape and composition of dissolving minerals at almost atomic scale. Geochemists will study how the minerals change over time and how much mineral is dissolved. The data and understanding that is obtained, by working from almost molecular to soil profile scale, will be used by numerical modellers to simulate the complex interactions between higher plants, fungi, minerals, soil organic matter and infiltrating water. A final step is to simulate soil profile weathering under a range of scenarios for changes in climatic conditions and soil management. The anticipated achievement is a much stronger fundamental understanding of soil formation, particularly the role of biological weathering, so that we can improve our management strategies for this important natural resource.
在自然界中,一个复杂的物理、化学和生物过程系统风化地球表面,将岩石转化为土壤。由于全球水土流失的速度现在比土壤形成的速度快得多(100倍或更多),主要是由于不可持续的耕作做法,土壤已成为一种有限的资源。尽管土壤对于维持我们这个星球及其60亿居民的重要性,但我们对风化的了解有限。这是因为各种科学方法没有充分整合,以解决发生的许多复杂的相互作用。因此,需要多学科的方法来研究土壤形成速率和过程。土壤真菌似乎利用植物能量从岩石中挖掘养分,但其机制尚不确定。我们想知道生物风化是否是由植物光合作用产生的糖流驱动的,以换取矿物颗粒中的营养元素(如磷,钾)。森林树木产生的化学能(糖)的近三分之一直接传递给共生(互利)根真菌。这些真菌完全覆盖树根,并在土壤中形成广泛的生命线网络。事实上,树木吸收的所有营养都是通过这些真菌吸收的。这项研究计划将确定真菌细胞及其分泌物如何与矿物表面相互作用,并影响从矿物到生物体的营养转移速率。将生物过程作为分子水平理解矿物质如何溶解的中心是与现有理论背道而驰的。研究生命系统中这些基本的分子风化机制,使我们能够创建新的概念和数学模型,可以描述生物风化,并用于土壤风化动力学的计算机模拟。我们建议在三个观察水平上研究这些生化相互作用:1。在分子尺度上,了解活细胞和矿物质之间的相互作用,并量化分解矿物质结构的化学物质。在土壤颗粒尺度上,量化真菌、根系和其他生物(如细菌)的活动和空间分布,以及它们对矿物质溶解释放养分的速率的影响;在土壤剖面尺度上,对活性真菌和碳能量的空间分布及其季节变化和对矿物溶解速率的影响模型进行检验。我们将联合收割机结合多个科学领域的专业知识。生物学家将在存在和不存在作为营养来源的矿物质的情况下与真菌和植物培养物一起工作,并测量真菌网络中的碳能量通量。表面化学家将使用X射线和红外线光束与细胞和矿物表面相互作用,然后使用复杂的传感器进行测量,以提供有关可能形成的化学键的信息。物理学家将测量真菌细胞和矿物表面之间的微小作用力,但确定真菌是否真的粘附并形成化学键。材料科学家将使用高度专业化的可视化方法来观察溶解矿物的形状和组成,几乎在原子尺度上。地球化学家将研究矿物质如何随时间变化以及有多少矿物质溶解。通过从几乎分子到土壤剖面尺度的工作所获得的数据和理解,将被数值模拟人员用来模拟高等植物,真菌,矿物质,土壤有机质和渗透水之间的复杂相互作用。最后一步是模拟气候条件和土壤管理变化的一系列情景下的土壤剖面风化。预期的成果是对土壤形成,特别是生物风化作用有了更深入的基本了解,从而使我们能够改进对这一重要自然资源的管理战略。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High resolution functional group mapping of fungi on a mineral surface
矿物表面真菌的高分辨率官能团图谱
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:A.W. Bray (Author)
- 通讯作者:A.W. Bray (Author)
Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale
- DOI:10.1130/g25699a.1
- 发表时间:2009-07-01
- 期刊:
- 影响因子:5.8
- 作者:Bonneville, Steeve;Smits, Mark M.;Benning, Liane G.
- 通讯作者:Benning, Liane G.
Securing soils for sustainable agriculture: a science-led strategy.
确保可持续农业的土壤:科学主导的战略。
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Bridge, J.
- 通讯作者:Bridge, J.
How bugs get their food: Linking mineral surface chemistry to nutrient acquisition.
虫子如何获取食物:将矿物表面化学与营养获取联系起来。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:A.W. Bray (Speaker)
- 通讯作者:A.W. Bray (Speaker)
Co - evolution of land plants and mycorrhizal fungi as biotic feedbacks on the long - term carbon cycle
陆地植物和菌根真菌的共同进化作为长期碳循环的生物反馈
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:D.J. Beerling (Author)
- 通讯作者:D.J. Beerling (Author)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Banwart其他文献
Steven Banwart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Banwart', 18)}}的其他基金
Assessing Agroecology Benefits and Novel Chemical and AMR Risks in Adopting a Sanitation-Agriculture Circular Economy
评估采用卫生农业循环经济的农业生态效益以及新型化学品和抗生素耐药性风险
- 批准号:
BB/X005879/1 - 财政年份:2022
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
MIDST-CZ: Maximising Impact by Decision Support Tools for sustainable soil and water through UK-China Critical Zone science
MIDST-CZ:通过中英关键区域科学,最大限度地发挥可持续土壤和水决策支持工具的影响
- 批准号:
NE/S009124/1 - 财政年份:2019
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
Using Critical Zone Science to Enhance Soil Fertility and Improve Ecosystem Services for Peri-Urban Agriculture in China
利用关键区域科学提高土壤肥力并改善中国城郊农业的生态系统服务
- 批准号:
NE/N007514/1 - 财政年份:2016
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
Using Critical Zone Science to Enhance Soil Fertility and Improve Ecosystem Services for Peri-Urban Agriculture in China
利用关键区域科学提高土壤肥力并改善中国城郊农业的生态系统服务
- 批准号:
NE/N007514/2 - 财政年份:2016
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
SoS RARE: Multidisciplinary research towards a secure and environmentally sustainable supply of critical rare earth elements (Nd and HREE)
SoS RARE:多学科研究,致力于关键稀土元素(Nd 和 HREE)的安全和环境可持续供应
- 批准号:
NE/M011232/2 - 财政年份:2016
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
SoS RARE: Multidisciplinary research towards a secure and environmentally sustainable supply of critical rare earth elements (Nd and HREE)
SoS RARE:多学科研究,致力于关键稀土元素(Nd 和 HREE)的安全和环境可持续供应
- 批准号:
NE/M011232/1 - 财政年份:2015
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
BioEngineering from first principles.
生物工程从第一原理开始。
- 批准号:
EP/I016589/1 - 财政年份:2011
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
GOING UNDERGROUND: HUMAN PATHOGENS IN THE SOIL-WATER ENVIRONMENT
深入地下:土壤-水环境中的人类病原体
- 批准号:
NE/E008143/1 - 财政年份:2007
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
GOING UNDERGROUND: HUMAN PATHOGENS IN THE SOIL-WATER ENVIRONMENT
深入地下:土壤-水环境中的人类病原体
- 批准号:
NE/E008992/1 - 财政年份:2007
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
Biologically-Mediated Weathering of minerals from Nanometre Scale to Environmental Systems.
从纳米尺度到环境系统的矿物生物介导风化。
- 批准号:
NE/C004566/1 - 财政年份:2006
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
相似海外基金
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Standard Grant
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Ready, Aim, Fire: understanding Sfa2-mediated control of the Type VI secretion system for interbacterial competition and invasion
准备、瞄准、开火:了解 Sfa2 介导的 VI 型分泌系统对细菌间竞争和入侵的控制
- 批准号:
BB/Y00048X/1 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
The functional role of thalamic-mediated brain networks in memory
丘脑介导的大脑网络在记忆中的功能作用
- 批准号:
MR/Y004507/1 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
CAREER: Understanding and engineering DNA supercoiling-mediated feedback in gene circuits
职业:理解和改造基因回路中 DNA 超螺旋介导的反馈
- 批准号:
2339986 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Continuing Grant
FORce-Mediated Cognition by Exercise (FORCE)
力介导的运动认知 (FORCE)
- 批准号:
2342257 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Standard Grant
Suppression of air pollution via aerosol mediated removal of peroxy radicals
通过气溶胶介导去除过氧自由基抑制空气污染
- 批准号:
NE/Y000226/1 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant
The Role of CD96hi Cells Mediated by Transcription Factor Aryl Hydrocarbon Receptor (AHR) in HIV Pathogenesis.
转录因子芳基烃受体 (AHR) 介导的 CD96hi 细胞在 HIV 发病机制中的作用。
- 批准号:
502605 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
The role of LILRB3-mediated immunomodulation on myeloid cells and exploration of new combination therapy for chronic inflammation and cancer
LILRB3介导的免疫调节对骨髓细胞的作用及慢性炎症和癌症联合治疗的探索
- 批准号:
24K18478 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating hepatic p53-mediated neutrophil suppression in non-alcoholic steatohepatitis
研究非酒精性脂肪性肝炎中肝脏 p53 介导的中性粒细胞抑制
- 批准号:
MR/X018512/1 - 财政年份:2024
- 资助金额:
$ 55.32万 - 项目类别:
Research Grant