Genetic and epigenetic mechanisms involved in allopolyploid speciation in Senecio
千里光异源多倍体物种形成涉及的遗传和表观遗传机制
基本信息
- 批准号:NE/D005353/1
- 负责人:
- 金额:$ 43.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hybrid speciation is one of the most important mechanisms of speciation in plants. Evolution is generally considered to be a slow process, but in plants, hybridization and changes in chromosome number (polyploidy) can generate new species (reproductively isolated from their parental species) in just a few generations. Genetic studies indicate that hybridization between two related species can lead to large-scale alterations in the hybrid genome, a phenomenon described as 'genome shock'. Such changes include rearrangement of chromosomes and alterations in levels of gene expression. We have been studying changes in the expression of flower genes arising as a consequence of hybrid speciation in the genus Senecio (ragworts). Senecio squalidus, commonly known as Oxford ragwort, because it was introduced into the UK (roughly 300 years ago) via the Oxford Botanic Garden, is a hybrid of two Senecio species native to Sicily, S. aethnensis and S. chrysanthemifolius, and since its escape from the Oxford Botanic Garden about 150 years ago, it has hybridized extensively with native groundsel, S. vulgaris, to produce three new hybrid species. One of these newly formed species, S. cambrensis (Welsh ragwort) formed from a sterile intermediate hybrid S. x baxteri by a doubling up of its chromosomes. S. x baxteri is sterile because it contains an odd number of chromosomes that cannot pair up properly during cell division. However a chance doubling up of these chromosomes in S. x baxteri during a faulty cell division led to the emergence of the fertile polyploid species S. cambrensis, which has become successfully established in Wales. Interestingly, these new hybrid Senecio species have all formed within the last 70 years. Our previous research has shown that following hybridization there is a dramatic change in the pattern of gene expression between the initial hybrid, S. baxteri, and its parents, S. vulgaris and S. squalidus, as well as between S. x baxteri and the fertile polyploid hybrid S. cambrensis (from which it differs only in chromosome number). Further experiments suggest that this change in gene expression can occur in a single generation. This suggests a dramatic 'shock' to the parental genomes, as a result of them coming together within a new hybrid, a phenomenon described as 'genome shock' by the geneticist Barbara McClintock. We are therefore interested in finding out how the different copies of these genes inherited from the parents are behaving in the hybrids and what factors may be causing the differences we observe. To do this we have selected small groups of genes with interesting patterns of expression and possible roles in flower development. These are: 1. genes affected by hybridisation, 2. genes affected by change in chromosome number (polyploidy), 3. genes that may regulate changes in flower structure and physiology between hybrids and parents, and 3. genes that appear to be inherited just from the mother plant, S. vulgaris (maternally inherited genes). To study the regulation of these subsets of genes we will use a technique that allows us to determine which parental gene copies are active within the hybrids. In theory, one parental gene copy will be switched off (gene silencing) allowing preferential expression of the other. This has been shown in studies of other polyploid hybrids, but has not yet been investigated in intermediate hybrids such as S. x baxteri. Secondly, we will use a variety of techniques to determine the mechanisms by which gene expression is altered in the hybrids, primarily studying DNA methylation, which has long been known to be part of the gene silencing process. Finally, we will look at the site of expression of genes we have identified as potentially involved in changes to flower form and physiology associated with the hybrid speciation process.
杂种物种形成是植物物种形成的重要机制之一。进化通常被认为是一个缓慢的过程,但在植物中,杂交和染色体数目的变化(多倍性)可以在短短几代内产生新物种(与其亲本物种生殖隔离)。遗传学研究表明,两个相关物种之间的杂交会导致杂交基因组的大规模改变,这种现象被称为“基因组休克”。这些变化包括染色体重排和基因表达水平的改变。我们一直在研究的花基因的表达变化所产生的杂交物种形成的结果属千里光(豚草)。千里光,通常被称为牛津千里光,因为它是通过牛津植物园引入英国的(大约300年前),是两种原产于西西里的千里光属物种的杂交种,S。aethnensis和S.自150年前从牛津植物园逃出后,它已与本地千里光S. vulgaris,以产生三个新的杂交种。其中一个新形成的种,S. cambrensis(威尔士豚草)由不育的中间杂种S. x baxteri通过加倍它的染色体。S. x baxteri是不育的,因为它含有奇数个染色体,在细胞分裂过程中不能正确配对。然而,这些染色体在S. x baxteri在一次错误的细胞分裂过程中导致了可育多倍体物种S. cambrensis,它已成功地建立在威尔士。有趣的是,这些新的杂交千里光物种都是在过去70年内形成的。我们以前的研究表明,杂交后,在最初的杂种,S。baxteri及其双亲S.和S. squalidus,以及S. x baxteri和可育多倍体杂种S. cambrensis(与之不同的只是染色体数目)。进一步的实验表明,这种基因表达的变化可以发生在一代人中。这表明,由于它们在一个新的杂交体中聚集在一起,父母的基因组受到了戏剧性的“冲击”,遗传学家芭芭拉·麦克林托克将这种现象称为“基因组冲击”。因此,我们有兴趣找出从父母那里继承的这些基因的不同拷贝在杂交后代中的行为,以及什么因素可能导致我们观察到的差异。为了做到这一点,我们选择了一小群基因,这些基因具有有趣的表达模式和在花发育中可能的作用。这些是:1.受杂交影响的基因,2.受染色体数目变化影响的基因(多倍性),3.可能调控杂种和亲本之间花结构和生理变化的基因,以及3.这些基因似乎只是从母株S.母系遗传基因(maternally inherited genes)为了研究这些基因子集的调节,我们将使用一种技术,使我们能够确定哪些亲本基因拷贝在杂交体中是活跃的。理论上,一个亲本基因拷贝将被关闭(基因沉默),允许另一个基因优先表达。这在其他多倍体杂种的研究中已经得到证实,但尚未在中间杂种如S。x baxteri.其次,我们将使用各种技术来确定杂交种中基因表达改变的机制,主要研究DNA甲基化,这是基因沉默过程的一部分。最后,我们将研究我们已经确定的基因表达的位点,这些基因可能参与了与杂交物种形成过程相关的花的形态和生理变化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Hiscock其他文献
Celebrating botanic gardens
庆祝植物园
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Simon Hiscock;Sarah Lennon;Bennett Young - 通讯作者:
Bennett Young
Simon Hiscock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Hiscock', 18)}}的其他基金
Evolutionary rescue and the limits to phenotypic plasticity: testing theory in the field
进化救援和表型可塑性的限制:现场测试理论
- 批准号:
NE/P002145/1 - 财政年份:2017
- 资助金额:
$ 43.1万 - 项目类别:
Research Grant
The genomic basis of adaptation and species divergence in Senecio
千里光适应和物种分化的基因组基础
- 批准号:
NE/G018448/1 - 财政年份:2010
- 资助金额:
$ 43.1万 - 项目类别:
Research Grant
Data Mining: SenecioDB - development of existing EST data into a publicly available web resource for the Asteraceae community.
数据挖掘:千里光数据库 - 将现有 EST 数据开发为菊科社区的公开可用网络资源。
- 批准号:
NE/F001207/1 - 财政年份:2008
- 资助金额:
$ 43.1万 - 项目类别:
Research Grant
相似国自然基金
NPM1表观重塑巨噬细胞代谢及修复表型在心肌缺血损伤中的调控作用
- 批准号:82371825
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
GLS1通过α-KG调控表观遗传修饰在实验性近视巩膜重塑中的作用机制
- 批准号:82371092
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
转录因子剂量效应调控体细胞重编程的表观遗传机制研究
- 批准号:31970681
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
组蛋白分子伴侣FACT调控异染色质转录沉默的作用机制研究
- 批准号:31900433
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
探索VASH2转录激活对肝细胞癌血管生成和上皮间质转化的作用及机制
- 批准号:81172267
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
肿瘤DNA低甲基化发生分子机理及其对白血病发病重要性的研究
- 批准号:30872933
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
高等植物远缘杂交诱导的表观遗传变异(epigenetic variation)现象及其在物种进化和新种形成中的作用
- 批准号:30430060
- 批准年份:2004
- 资助金额:140.0 万元
- 项目类别:重点项目
相似海外基金
Understanding and targeting non-genetic mechanisms of drug resistance
了解和针对耐药性的非遗传机制
- 批准号:
10590490 - 财政年份:2023
- 资助金额:
$ 43.1万 - 项目类别:
ANP Receptor: Genetic and Epigenetic Mechanisms Regulating Blood Pressure and Kidney Injury and Dysfunction
ANP 受体:调节血压和肾损伤和功能障碍的遗传和表观遗传机制
- 批准号:
10512972 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Epigenetic Mechanisms That Drive Genetic Risk in Juvenile Arthritis
导致幼年关节炎遗传风险的表观遗传机制
- 批准号:
10364303 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Genetic and hormonal mechanisms mediating sex differences in TB and TB-HIV
介导结核病和结核病艾滋病毒性别差异的遗传和激素机制
- 批准号:
10557906 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
A functional genomics pipeline for genetic discovery in diabetic kidney disease
用于糖尿病肾病遗传发现的功能基因组学管道
- 批准号:
10673703 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Genetic and hormonal mechanisms mediating sex differences in TB and TB-HIV
介导结核病和结核病艾滋病毒性别差异的遗传和激素机制
- 批准号:
10484064 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Epigenetic Mechanisms That Drive Genetic Risk in Juvenile Arthritis
导致幼年关节炎遗传风险的表观遗传机制
- 批准号:
10710032 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
A functional genomics pipeline for genetic discovery in diabetic kidney disease
用于糖尿病肾病遗传发现的功能基因组学管道
- 批准号:
10418927 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Linking Genetic, Epigenetic and Signaling Mechanisms of Oncogene Addiction
将癌基因成瘾的遗传、表观遗传和信号机制联系起来
- 批准号:
10392471 - 财政年份:2021
- 资助金额:
$ 43.1万 - 项目类别:
Air pollution and Dementia: Exploring genetic, cardiovascular, and epigenetic moderators and mechanisms
空气污染和痴呆症:探索遗传、心血管和表观遗传调节因素和机制
- 批准号:
2604990 - 财政年份:2021
- 资助金额:
$ 43.1万 - 项目类别:
Studentship