3D PET Reconstruction Using Generalized Natural Pixels

使用广义自然像素进行 3D PET 重建

基本信息

项目摘要

DESCRIPTION (provided by applicant): In the past ten years, there has been a substantial increase in the use of clinical PET for oncological imaging applications, which has primarily been driven by the increased availability of 18F-FDG. In order to maximize sensitivity, the recent trend in PET scanner design is for faster and brighter scintillators, larger axial dimensions, and acquisition of fully three-dimensional (3D) data, without the use of septa. These trends result in an increased complexity of the reconstruction process. The overall goal of this proposal is to develop 3D image reconstruction methods for PET that can provide improved diagnostic accuracy. The most common approach for clinical 3D PET reconstruction is to use a re-binning method combined with 2D reconstruction. While this approach can be implemented with low computational cost, it models the data as line integrals through the object, and thus cannot accurately account for the spatially variant detector response in PET. In actuality, there are a number of physical effects in the imaging process that invalidate this line integral assumption. These include such effects as: positron range, non-collinearity, spatially variant geometric efficiency, inter-crystal penetration, crystal scatter, and uncertainties in accurately locating the position of interaction within the detector block. In this project, we propose to develop and investigate an approach for 3D PET that use alternative basis functions (as opposed to voxel basis functions) to describe the object of interest. These basis functions takes full advantage of the symmetries present in the PET geometry resulting in a system response matrix with block circulant properties. These properties make it possible to implement the reconstruction algorithm with storage of the entire 3D system response matrix in memory, and with very fast computation time. An accurate Monte Carlo simulation code (GATE) will be used to compute the 3D system response matrix. Psychophysical observer studies, using clinical images, will be conducted to evaluate improvements in sub 1 cm tumor detection with different reconstruction methods. If the proposed reconstruction methods are successful in their intent, the care of patients with suspected or known cancer will be improved. PUBLIC HEALTH RELEVANCE: The overall goal of this proposal is to develop 3D image reconstruction methods for PET that can provide improved diagnostic accuracy. Psychophysical observer studies, using clinical images, will be conducted to evaluate improvements in sub 1 cm tumor detection with different reconstruction methods. If the proposed reconstruction methods are successful in their intent, the care of patients with suspected or known cancer will be improved.
描述(由申请人提供):在过去十年中,临床PET在肿瘤成像应用中的使用大幅增加,这主要是由于18 F-FDG可用性的增加。为了最大限度地提高灵敏度,PET扫描仪设计的最新趋势是更快、更亮的放大器、更大的轴向尺寸和完全三维(3D)数据的采集,而不使用隔片。这些趋势导致重建进程更加复杂。本提案的总体目标是开发用于PET的3D图像重建方法,以提高诊断准确性。临床3D PET重建最常见的方法是使用与2D重建相结合的重新分箱方法。虽然这种方法可以以低计算成本实现,但它将数据建模为通过对象的线积分,因此不能准确地解释PET中的空间变化探测器响应。实际上,在成像过程中有许多物理效应使这种线积分假设无效。这些影响包括:正电子范围、非共线性、空间变化的几何效率、晶体间穿透、晶体散射以及在检测器块内精确定位相互作用位置的不确定性。在这个项目中,我们建议开发和研究一种3D PET方法,使用替代基函数(与体素基函数相反)来描述感兴趣的对象。这些基函数充分利用PET几何结构中存在的对称性,从而产生具有块循环特性的系统响应矩阵。这些属性使得可以在存储器中存储整个3D系统响应矩阵的情况下实现重建算法,并且具有非常快的计算时间。将使用精确的蒙特卡罗模拟代码(GATE)计算3D系统响应矩阵。将使用临床图像进行心理物理观察者研究,以评价不同重建方法对1 cm以下肿瘤检测的改善。如果所提出的重建方法在其意图上是成功的,那么对疑似或已知癌症患者的护理将得到改善。公共卫生相关性:本提案的总体目标是开发用于PET的3D图像重建方法,以提高诊断准确性。将使用临床图像进行心理物理观察者研究,以评价不同重建方法对1 cm以下肿瘤检测的改善。如果所提出的重建方法在其意图上是成功的,那么对疑似或已知癌症患者的护理将得到改善。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN J GLICK其他文献

STEPHEN J GLICK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN J GLICK', 18)}}的其他基金

Development of a Photon Counting Detector for CT Breast Imaging
用于 CT 乳腺成像的光子计数探测器的开发
  • 批准号:
    8068337
  • 财政年份:
    2010
  • 资助金额:
    $ 21.68万
  • 项目类别:
Development of a Photon Counting Detector for CT Breast Imaging
用于 CT 乳腺成像的光子计数探测器的开发
  • 批准号:
    8220792
  • 财政年份:
    2010
  • 资助金额:
    $ 21.68万
  • 项目类别:
Development of a Photon Counting Detector for CT Breast Imaging
用于 CT 乳腺成像的光子计数探测器的开发
  • 批准号:
    7888416
  • 财政年份:
    2010
  • 资助金额:
    $ 21.68万
  • 项目类别:
Development of a Photon Counting Detector for CT Breast Imaging
用于 CT 乳腺成像的光子计数探测器的开发
  • 批准号:
    8456064
  • 财政年份:
    2010
  • 资助金额:
    $ 21.68万
  • 项目类别:
Role of 3D Tomography in Breast Cancer
3D 断层扫描在乳腺癌中的作用
  • 批准号:
    7674447
  • 财政年份:
    2009
  • 资助金额:
    $ 21.68万
  • 项目类别:
3D PET Reconstruction Using Generalized Natural Pixels
使用广义自然像素进行 3D PET 重建
  • 批准号:
    7660259
  • 财政年份:
    2009
  • 资助金额:
    $ 21.68万
  • 项目类别:
Role of 3D Tomography in Breast Cancer
3D 断层扫描在乳腺癌中的作用
  • 批准号:
    7894671
  • 财政年份:
    2009
  • 资助金额:
    $ 21.68万
  • 项目类别:
Iterative Reconstruction for Breast Tomosynthesis
乳房断层合成的迭代重建
  • 批准号:
    7392305
  • 财政年份:
    2005
  • 资助金额:
    $ 21.68万
  • 项目类别:
Iterative Reconstruction for Breast Tomosynthesis
乳房断层合成的迭代重建
  • 批准号:
    7590341
  • 财政年份:
    2005
  • 资助金额:
    $ 21.68万
  • 项目类别:
Iterative Reconstruction for Breast Tomosynthesis
乳房断层合成的迭代重建
  • 批准号:
    6969515
  • 财政年份:
    2005
  • 资助金额:
    $ 21.68万
  • 项目类别:

相似海外基金

Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
  • 批准号:
    2649903
  • 财政年份:
    2022
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
  • 批准号:
    475572
  • 财政年份:
    2022
  • 资助金额:
    $ 21.68万
  • 项目类别:
    Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10559690
  • 财政年份:
    2022
  • 资助金额:
    $ 21.68万
  • 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10437156
  • 财政年份:
    2022
  • 资助金额:
    $ 21.68万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10277514
  • 财政年份:
    2021
  • 资助金额:
    $ 21.68万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10462646
  • 财政年份:
    2021
  • 资助金额:
    $ 21.68万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10631239
  • 财政年份:
    2021
  • 资助金额:
    $ 21.68万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    $ 21.68万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    $ 21.68万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10809977
  • 财政年份:
    2021
  • 资助金额:
    $ 21.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了