SHAPE OPTIMIZING DIFFEOMORPHISMS FOR COMPUTATIONAL BIOLOGY

计算生物学的形状优化微分形

基本信息

  • 批准号:
    7955822
  • 负责人:
  • 金额:
    $ 0.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This proposal will contribute a new collaboration for implementing rigorous spatiotemporal medical image analysis in a large scale computing environment. The system will dramatically enhance the neuroimaging community's quantitative understanding of normal and pathological aging and correlated variables. Medical images capture the changes that occur in an individual over time and samples the range of anatomical and functional differences visible in a population lifespan. Our goal is to associate these differences with causes, for example, innate population variability, injury, pathology, or the effects of genotype on phenotype. The recently proposed Diffeomorphometry (DM) system quantifies and relates these variables to an optimal spatiotemporal coordinate system. This novel technique allows the atlas to evolve in time along with the population to statistically capture effects of age, disease or other factors. This common, evolving map space gives a wealth of prior knowledge, allowing one to build probabilities describing ranges and types of variation in shape and function. These aggregate population attributes may then be studied and visualized, used in research, as well as teaching and diagnosis. Our DM method is designed with the axioms of symmetry (the algorithms must be symmetric) and specificity (the analysis should be optimal in the study space) in mind and with the ability to automatically generate database-specific atlases. The rigorous and symmetric definition of change given by DM captures differences in neuroanatomy with superlative accuracy, reproducibility and high level of detail. Consequently, a DM study maximizes the information extracted from a neuroimaging cohort, especially when correlated with, for instance, genetic or behavioral variables. Furthermore, DM satisfies pressing research needs in neuroimaging: DM derives optimal atlases from arbitrarily sized databases and gives large deformation optimization of anatomical correspondence, through landmark and statistical guidance. The resources in the UCLA Center for Computational Biology (CCB) will allow these methods to be applied on the large datasets they were designed for and at an unprecedented resolution and scale. The proposed work has three distinctive aims: collaboration, methodology and clinical evaluation/application: Instantiate a collaboration between UPenn and UCLA, where data and algorithms are shared and disseminated via the Center for Computational Biology; Develop Diffeomorphometry into a cutting-edge, large-scale, publicly available computational tool; Evaluate and refine the developed methodology, as well as compare with CCB brain mapping tools, on neuroimaging studies of structure-function associations under neurodegenerative conditions
这个子项目是许多研究子项目中的一个 由NIH/NCRR资助的中心赠款提供的资源。子项目和 研究者(PI)可能从另一个NIH来源获得了主要资金, 因此可在其他CRISP条目中表示。所列机构为 研究中心,而研究中心不一定是研究者所在的机构。 这一建议将有助于在大规模计算环境中实现严格的时空医学图像分析的新的合作。该系统将大大提高神经影像学界对正常和病理性衰老及相关变量的定量理解。医学图像捕捉个体随时间发生的变化,并对人群寿命中可见的解剖和功能差异范围进行采样。我们的目标是将这些差异与原因联系起来,例如,先天群体变异性,损伤,病理学或基因型对表型的影响。最近提出的几何形态测量(DM)系统量化和这些变量的最佳时空坐标系。这项新技术允许图谱沿着人口的发展,以统计方式捕捉年龄、疾病或其他因素的影响。这个共同的,不断发展的映射空间提供了丰富的先验知识,允许人们建立描述形状和功能变化范围和类型的概率。然后可以研究和可视化这些聚集的人口属性,用于研究,以及教学和诊断。我们的DM方法的设计与对称性(算法必须是对称的)和特异性(分析应该是最佳的研究空间)的公理,并具有自动生成特定于数据库的地图集的能力。DM给出的变化的严格和对称的定义以最高的准确性、可重复性和高水平的细节捕捉神经解剖学的差异。因此,DM研究最大限度地提高了从神经影像学队列中提取的信息,特别是当与遗传或行为变量相关时。此外,DM满足神经影像学的迫切研究需求:DM从任意大小的数据库中导出最佳图谱,并通过地标和统计指导对解剖对应进行大变形优化。加州大学洛杉矶分校计算生物学中心(CCB)的资源将允许这些方法应用于它们设计的大型数据集,并以前所未有的分辨率和规模应用。拟议的工作有三个独特的目标:合作,方法和临床评估/应用:实例化之间的合作,其中数据和算法通过计算生物学中心共享和传播;将生物形态学发展成为一个尖端的,大规模的,公开可用的计算工具;评估和完善已开发的方法,并与CCB脑映射工具进行比较,用于神经退行性疾病条件下结构-功能关联的神经影像学研究

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES C GEE其他文献

JAMES C GEE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES C GEE', 18)}}的其他基金

Multi-scale and multi-modality imaging of neuropathology in VCID
VCID 神经病理学的多尺度、多模态成像
  • 批准号:
    10812034
  • 财政年份:
    2023
  • 资助金额:
    $ 0.68万
  • 项目类别:
Advanced Normalization Tools
高级标准化工具
  • 批准号:
    10445130
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
Advanced Normalization Tools
高级标准化工具
  • 批准号:
    10708793
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
Establishing Common Coordinate Framework for Quantitative Cell Census in Developing Mouse Brains
建立小鼠大脑发育中定量细胞普查的通用坐标框架
  • 批准号:
    10088508
  • 财政年份:
    2020
  • 资助金额:
    $ 0.68万
  • 项目类别:
International Conference on Information Processing in Medical Imaging 2019
2019年医学影像信息处理国际会议
  • 批准号:
    9760660
  • 财政年份:
    2019
  • 资助金额:
    $ 0.68万
  • 项目类别:
ITK-Lung: A Software Framework for Lung Image Processing and Analysis
ITK-Lung:肺部图像处理和分析的软件框架
  • 批准号:
    9325271
  • 财政年份:
    2017
  • 资助金额:
    $ 0.68万
  • 项目类别:
A Community Resource for Single Cell Data in the Brain
大脑中单细胞数据的社区资源
  • 批准号:
    9415946
  • 财政年份:
    2017
  • 资助金额:
    $ 0.68万
  • 项目类别:
Waxholm Space for Rodent Neuroinformatics
啮齿动物神经信息学沃克斯霍姆空间
  • 批准号:
    9338327
  • 财政年份:
    2016
  • 资助金额:
    $ 0.68万
  • 项目类别:
Waxholm Space for Rodent Neuroinformatics
啮齿动物神经信息学沃克斯霍姆空间
  • 批准号:
    9763673
  • 财政年份:
    2016
  • 资助金额:
    $ 0.68万
  • 项目类别:
NON-AFFINE REGISTRATION
非仿射配准
  • 批准号:
    8363498
  • 财政年份:
    2011
  • 资助金额:
    $ 0.68万
  • 项目类别:

相似海外基金

BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
  • 批准号:
    23KF0076
  • 财政年份:
    2023
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
  • 批准号:
    10740308
  • 财政年份:
    2023
  • 资助金额:
    $ 0.68万
  • 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
  • 批准号:
    10818803
  • 财政年份:
    2023
  • 资助金额:
    $ 0.68万
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10743857
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10558629
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10508739
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
    Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10570256
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10364874
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10467697
  • 财政年份:
    2022
  • 资助金额:
    $ 0.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了