MATHEMATICAL MODELING AND SIMULATION
数学建模与仿真
基本信息
- 批准号:7957214
- 负责人:
- 金额:$ 13.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaBehaviorBiomedical ComputingBody SurfaceBrainCardiacCardiac MyocytesCell membraneCellsCharacteristicsCommunitiesComputer Retrieval of Information on Scientific Projects DatabaseComputer SimulationComputer softwareDeep Brain StimulationDevelopmentDiseaseElectric ConductivityElectric CountershockElectrolytesElectrophysiology (science)ElementsEpilepsyExtracellular SpaceFiberFunctional disorderFundingFutureGap JunctionsGoalsGrantHeadHeartHistologyInstitutionIon ChannelIschemiaJournalsKnowledgeLinkMeasurementMeasuresMicroscopicMicroscopyModelingMuscle CellsMyocardial IschemiaMyocardial tissueNamesNaturePharmacy (field)ProcessPublicationsPublishingResearchResearch ActivityResearch PersonnelResourcesSimulateSolidSolutionsSourceStructureTissue ModelTissuesTranslatingTranslationsUnited States National Institutes of HealthVariantWorkbasecell behaviorextracellularfeedingimprovedjournal articlemulti-scale modelingnovelresponsesimulationsoftware developmentsymposiumtoolweb site
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
MATHEMATICAL MODELING AND SIMULATION
Subproject Description
As a Center, we have established expertise in the area of simulation in bioelectric fields, have built on that expertise in the current funding period, and propose to continue to make this form of simulation a centerpiece of our future research activities. At the start of the Center, our focus was on passive electrical characteristics of the torso and head and their response to endogenous bioelectric sources (the heart and brain); we solved both forward problems based on known sources as well as inverse problems, in which we sought to identify and localize bioelectric sources from measurements on (or outside) the body surface.
In recent years, we have also begun to simulate the bioelectric activity itself and thus to study the nature of bioelectric sources; these sources are highly dynamic and increased knowledge of their behavior will help improve our ability to predict the consequences of their function and disfunction in disease. We propose to continue this research, with emphasis on simulating the effects of myocardial ischemia and defibrillation on the heart and epilepsy and deep brain stimulation in the brain. In order to translate the discoveries and computational developments within the Center to the broader biomedical user community, we will continue to develop, publish, release, and support software that will incorporate models of dynamic bioelectric sources as well as the tools with which to create efficient solutions to the associated forward and inverse problems.
One application of the simulation of bioelectric activity has been in the computation of the spread of excitation in microscopic models of myocardial tissue. The goal of this research was to address a long standing gap in the multiscale modeling of cardiac electrophysiology between the very evolved and well characterized behavior of cardiac cell membranes and the simulation of electrical activity in the whole heart. Simulation of the heart has advance mainly because there exist models at each of the meaningful scales, from stochastic models of ion channels to whole heart and torso. However, there is a need for simplification at each transition of scale and hence a requirement that results at one scale find an associated expression at the next. For example, a model of tissue must be able to incorporate the effects of changes in the behavior of the cell in order to mimic or predict pathophysiology of the mechanisms of pharmaceutics. It is also essential, and until recently a significant omission, in this translation across scales that changes in microscopic structure find expression in tissue level models. We have addressed this omission.
The approach we have developed, which we have named "microdomain" modeling, is meant to incorporate structural information at the microscopic scale and then general parameters that feed into the tissue level simulation framework known as the "bidomain" approach. Each microdomain model we have created contains a modest number (30--150) of cardiac myocytes surrounded by a discrete extracellular space, which is also an explicit part of the model. The information for these models comes from microscopy and histology together with basic conductivities of electrolytes and the gap junctions that link myocytes. By tessellating the microdomain into millions of finite elements, it is possible to compute bulk values for both intracellular and extracellular, anisotropic conductivities, which are the equivalent parameters in the bidomain. The bidomain is the product of a homogenization process that removes this level of detail, incorporating it in a few tissue parameters. In this way, it is possible to include the effects of, for example, myocardial ischemia on changes in extracellular space on a small, microdomain and then compute the required bidomain parameters to predict the response of the whole heart to ischemia.
In the past year, we have expanded the scope of the microdomain models to 132 cells, which is now large enough to represent the spread of activation and measure conduction velocities both along and across he fiber direction. This new model is the basis for one journal article submitted and a second nearing completion of final review. The novel aspect of especially the second article is that it describes a comparison of the spread of excitation in a microdomain and in a bidomain model with the same physical size and characteristics. We were able to show that under a reasonable range of conditions, i.e., varying parameters such as extracellular space and gap junction conductivities to represent both normal and ischemic myocardium, both models generate the same results. However, this is only true if the bulk conductivity parameters of the bidomain are derived from the microdomain simulations. Thus, we have developed a means of linking explicitly variations in microscopic geometry or electrical conductivity with the resulting variations in associated bidomain parameters, a link that was previously only possible through very coarse approximation. These two articles, along with two previous journal publications describing the passive characteristics of the microdomain, should form a solid body of work that, along with the conferences at which we continue to present these results, will establish this approach. The software required to carry out the simulations represents a merging of SCIRun and the Cardiowave software developed by the Duke Computational Electrophysiology group and is available through the CIBC website.
这个子项目是众多研究子项目之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rob S. MacLeod其他文献
Interpretable Modeling and Reduction of Unknown Errors in Mechanistic Operators
可解释的建模和减少机械操作员中的未知错误
- DOI:
10.1007/978-3-031-16452-1_44 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Maryam Toloubidokhti;Nilesh Kumar;Zhiyuan Li;P. Gyawali;B. Zenger;W. Good;Rob S. MacLeod;Linwei Wang - 通讯作者:
Linwei Wang
Functional and Structural Remodeling as Atrial Fibrillation Progresses in a Persistent Atrial Fibrillation Canine Model
持续性房颤犬模型中房颤进展时的功能和结构重构
- DOI:
10.1016/j.jacep.2024.10.001 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.700
- 作者:
Eugene Kwan;Bram Hunt;Eric N. Paccione;Ben A. Orkild;Jake A. Bergquist;Yuki Ishidoya;Kyoichiro Yazaki;Jason K. Mendes;Ed V.R. DiBella;Rob S. MacLeod;Derek J. Dosdall;Ravi Ranjan - 通讯作者:
Ravi Ranjan
Uncertainty Quantification of the Effect of Variable Conductivity in Ventricular Fibrotic Regions on Ventricular Tachycardia
心室纤维化区域可变电导率对室性心动过速影响的不确定性量化
- DOI:
10.22489/cinc.2023.141 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jake A. Bergquist;Matthias Lange;B. Zenger;Benjamin A. Orkild;Eric Paccione;Eugene Kwan;B. Hunt;Jiawei Dong;Rob S. MacLeod;Akil Narayan;Ravi Ranjan - 通讯作者:
Ravi Ranjan
The Role of Beta-1 Receptors in the Response to Myocardial Ischemia
Beta-1 受体在心肌缺血反应中的作用
- DOI:
10.22489/cinc.2022.216 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Lindsay C. Rupp;B. Zenger;Jake A. Bergquist;Anna Busatto;Rob S. MacLeod - 通讯作者:
Rob S. MacLeod
ASSESSMENT OF THE LEFT ATRIAL SUBSTRATE IN LONE ATRIAL FIBRILLATION: IMPLICATIONS FOR STAGING OF ATRIAL FIBRILLATION
- DOI:
10.1016/s0735-1097(10)60781-4 - 发表时间:
2010-03-09 - 期刊:
- 影响因子:
- 作者:
Nathan Burgon;Troy J. Badger;Nazem W. Akoum;Gaston Vergara;Lori McMullan;Yaw A. Adjei-Poku;Thomas S. Haslam;Jeremy Fotheringham;Eugene G. Kholmovski;Rob S. MacLeod;Nassir F. Marrouche - 通讯作者:
Nassir F. Marrouche
Rob S. MacLeod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rob S. MacLeod', 18)}}的其他基金
Integration of Uncertainty Quantification with SCIRun Bioelectric Field Simulation Pipeline
不确定性量化与 SCIRun 生物电场模拟流程的集成
- 批准号:
10406132 - 财政年份:2021
- 资助金额:
$ 13.53万 - 项目类别:
Integration of Uncertainty Quantification with SCIRun Bioelectric Field Simulation Pipeline
不确定性量化与 SCIRun 生物电场模拟流程的集成
- 批准号:
10021662 - 财政年份:2019
- 资助金额:
$ 13.53万 - 项目类别:
Integration of Uncertainty Quantification with SCIRun Bioelectric Field Simulation Pipeline
不确定性量化与 SCIRun 生物电场模拟流程的集成
- 批准号:
10262927 - 财政年份:2019
- 资助金额:
$ 13.53万 - 项目类别:
Image Based Modeling, Simulation, and Visualization Summer Course for Biomedical
基于图像的建模、仿真和可视化生物医学暑期课程
- 批准号:
8923315 - 财政年份:2013
- 资助金额:
$ 13.53万 - 项目类别:
Image Based Modeling, Simulation, and Visualization Summer Course for Biomedical
基于图像的建模、仿真和可视化生物医学暑期课程
- 批准号:
8727083 - 财政年份:2013
- 资助金额:
$ 13.53万 - 项目类别:
Image Based Modeling, Simulation, and Visualization Summer Course for Biomedical
基于图像的建模、仿真和可视化生物医学暑期课程
- 批准号:
8551344 - 财政年份:2013
- 资助金额:
$ 13.53万 - 项目类别:
Image Based Modeling, Simulation, and Visualization Summer Course for Biomedical
基于图像的建模、仿真和可视化生物医学暑期课程
- 批准号:
9339697 - 财政年份:2013
- 资助金额:
$ 13.53万 - 项目类别:
Image Based Modeling, Simulation, and Visualization Summer Course for Biomedical
基于图像的建模、仿真和可视化生物医学暑期课程
- 批准号:
9132283 - 财政年份:2013
- 资助金额:
$ 13.53万 - 项目类别:
SIMULATION OF ELECTRIC STIMULATION FOR BONE GROWTH
骨骼生长的电刺激模拟
- 批准号:
8363711 - 财政年份:2011
- 资助金额:
$ 13.53万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Role of Central Neurotensin Signaling in the Ventral Tegmental Area for Ingestive Behavior and Body Weight
中枢神经降压素信号在腹侧被盖区对摄入行为和体重的作用
- 批准号:
10536558 - 财政年份:2022
- 资助金额:
$ 13.53万 - 项目类别:
Role of Central Neurotensin Signaling in the Ventral Tegmental Area for Ingestive Behavior and Body Weight
中枢神经降压素信号在腹侧被盖区对摄入行为和体重的作用
- 批准号:
10665597 - 财政年份:2022
- 资助金额:
$ 13.53万 - 项目类别:
Elucidation of the functional role of neural stem cells in the area postrema in the regulation of feeding behavior
阐明后区神经干细胞在调节摄食行为中的功能作用
- 批准号:
21K15177 - 财政年份:2021
- 资助金额:
$ 13.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation Analysis of Networked Compact City Considering the Wandering Behavior in the Urban Function and Residential guidance Area.
考虑城市功能与居住引导区游走行为的网络化紧凑城市评价分析。
- 批准号:
21K04296 - 财政年份:2021
- 资助金额:
$ 13.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
What is the origin of friction force depending on the sliding velocity? Approach from atomic-scale behavior in real area of contact
取决于滑动速度的摩擦力的来源是什么?
- 批准号:
20K04115 - 财政年份:2020
- 资助金额:
$ 13.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the differential roles of Glutamatergic and GABAergic projections from the Lateral Preoptic Area to the Lateral Habenula in Reward, Aversion, and Drug-Seeking Behavior.
定义从外侧视前区到外侧缰核的谷氨酸能和 GABA 能投射在奖励、厌恶和药物寻求行为中的不同作用。
- 批准号:
10242872 - 财政年份:2019
- 资助金额:
$ 13.53万 - 项目类别:
Elucidating roles of ventral tegmental area dopaminergic neurons in motivation of appetitive goal-directed behavior
阐明腹侧被盖区多巴胺能神经元在食欲目标导向行为的激励中的作用
- 批准号:
19K03381 - 财政年份:2019
- 资助金额:
$ 13.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the differential roles of Glutamatergic and GABAergic projections from the Lateral Preoptic Area to the Lateral Habenula in Reward, Aversion, and Drug-Seeking Behavior.
定义从外侧视前区到外侧缰核的谷氨酸能和 GABA 能投射在奖励、厌恶和药物寻求行为中的不同作用。
- 批准号:
9926602 - 财政年份:2019
- 资助金额:
$ 13.53万 - 项目类别:
Investigating the interplay between ventral tegmental area dopamine, medial orbitofrontal cortex, and ventromedial striatum in compulsive-like behavior
研究强迫样行为中腹侧被盖区多巴胺、内侧眶额皮质和腹内侧纹状体之间的相互作用
- 批准号:
9393053 - 财政年份:2018
- 资助金额:
$ 13.53万 - 项目类别:
Role of Lateral Hypothalmic Area Perineuronal Nets in the Reinstatement of Cocaine-Seeking Behavior
外侧下丘脑区神经周围网络在恢复可卡因寻求行为中的作用
- 批准号:
9598308 - 财政年份:2018
- 资助金额:
$ 13.53万 - 项目类别:














{{item.name}}会员




