STRUCTURAL STUDIES OF PROTEINS INVOLVED IN THE LPS BIOSYNTHETIC PATHWAY
LPS 生物合成途径相关蛋白质的结构研究
基本信息
- 批准号:7957304
- 负责人:
- 金额:$ 3.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AnabolismAntibioticsCell Membrane PermeabilityCell WallCommitComputer Retrieval of Information on Scientific Projects DatabaseCrystallographyDrug Delivery SystemsFundingGoalsGrantHeptosesInfectionInstitutionIsomeraseLightLipid ALipopolysaccharide Biosynthesis PathwayLipopolysaccharidesPathway interactionsPhenotypePolysaccharidesProteinsResearchResearch PersonnelResourcesSideSourceSynchrotronsUnited States National Institutes of Healthcombatdesigninhibitor/antagonist
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Lipopolysaccharide (LPS) is a major component of the Gram-negative bacterial cell wall. LPS is comprised of three components: lipid A, core polysaccharide (Kdo and one or more heptose residues), and polysaccharide side chains. LPS biosynthesis that is halted prior to heptose addition results in a deep-rough phenotype and membrane permeability to antibiotics is increased. For this reason, the heptose biosynthetic pathway has been marked as a potential drug target. Our goal is to determine the mechanism of GmhA, an isomerase that catalyzes the first committed step of ADP-L-glycero-¿¿¿x-manno-heptose biosynthesis as well as GmhB and HldE which are also key players in LPS biosynthesis. Determination of the enzymatic mechanisms used by these proteins will aid in the rational design of inhibitors of GmhA, GmhB and HldE as a means to combat Gram negative infection.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
脂多糖(LPS)是革兰氏阴性细菌细胞壁的主要成分。LPS由三种组分组成:脂质A、核心多糖(Kdo和一个或多个庚糖残基)和多糖侧链。在添加庚糖之前停止的LPS生物合成导致深粗糙表型,并且膜对抗生素的渗透性增加。因此,庚糖生物合成途径已被标记为潜在的药物靶点。我们的目标是确定GmhA的机制,GmhA是催化ADP-L-甘油-甘露-庚糖生物合成的第一个关键步骤的异构酶,以及GmhB和HldE也是LPS生物合成的关键参与者。确定这些蛋白质使用的酶促机制将有助于合理设计GmhA、GmhB和HldE抑制剂,作为对抗革兰氏阴性菌感染的手段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MURRAY JUNOP其他文献
MURRAY JUNOP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MURRAY JUNOP', 18)}}的其他基金
STRUCTURAL STUDIES OF PROTEINS INVOLVED IN THE LPS BIOSYNTHETIC PATHWAY
LPS 生物合成途径相关蛋白质的结构研究
- 批准号:
8363381 - 财政年份:2011
- 资助金额:
$ 3.45万 - 项目类别:
STRUCTURAL STUDIES OF PROTEINS INVOLVED IN THE LPS BIOSYNTHETIC PATHWAY
LPS 生物合成途径相关蛋白质的结构研究
- 批准号:
8170632 - 财政年份:2010
- 资助金额:
$ 3.45万 - 项目类别:
STRUCTURAL STUDIES OF PROTEINS INVOLVED IN THE LPS BIOSYNTHETIC PATHWAY
LPS 生物合成途径相关蛋白质的结构研究
- 批准号:
7726202 - 财政年份:2008
- 资助金额:
$ 3.45万 - 项目类别:
STRUCTURAL STUDIES OF PROTEINS INVOLVED IN THE LPS BIOSYNTHETIC PATHWAY
LPS 生物合成途径涉及的蛋白质的结构研究
- 批准号:
7602269 - 财政年份:2007
- 资助金额:
$ 3.45万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 3.45万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 3.45万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 3.45万 - 项目类别:
Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 3.45万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 3.45万 - 项目类别:
ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 3.45万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 3.45万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 3.45万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 3.45万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 3.45万 - 项目类别:
Studentship