Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
基本信息
- 批准号:7965425
- 负责人:
- 金额:$ 10.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressBehaviorBindingBiochemical PathwayBioinformaticsBiologicalCartoonsCell CycleCell Cycle ProgressionCell Cycle RegulationCell Cycle StageCellsCellular StressChromatinCollectionCommunitiesComplexComputer SimulationComputersDNA biosynthesisDataDevelopmentDevicesElectronicsEnzymesGeneral PopulationGlossaryGoalsGrowthKnowledgeLabelLanguageLearningLinkLocationLogicMammalian CellMapsMetabolismModificationMolecularMusNamesOutcomePatternPhosphorylationPost-Translational Protein ProcessingProcessPropertyReaderReadingRegulatory PathwayResearch PersonnelScientistSignal PathwaySignal TransductionSpecific qualifier valueStagingSystemUpdateWorkantitumor drugbiological systemscancer cellcell growthflexibilitygenetic regulatory proteininterestmultidisciplinaryprotein complexresponsetoolweb site
项目摘要
To learn more about how bioregulatory networks control the cell cycle in normal and cancer cells, we collaborate with a cross-disciplinary team to generate electronic molecular interaction maps (MIMs), which show the behavior of cell cycle regulatory pathways during normal growth and under conditions that perturb the cell cycle. These efforts help develop bioinformatics tools that organize large collections of facts, including descriptions of networks of interacting regulatory molecules, multi-protein complexes, protein modifications (e.g., phosphorylations), etc. One of the main stumbling blocks to organizing molecular knowledge is the lack of a common language that allows scientists to integrate data in a clear, standardized, and preferably computer-readable format. To that end, we implemented the Molecular Interaction Map (MIM) language, a diagrammatic annotation first proposed by Kurt Kohn, which encodes molecular information in the form of diagrams (molecular interaction maps or MIMs). These MIMs are used to represent and analyze molecular interactions in the same way that circuit diagrams are used to trouble-shoot electronic devices. Investigators usually describe biochemical pathways in cartoon-like diagrams, but these representations of molecular interactions are often incomplete and ambiguous. For example, an arrow between two components could signify an increase in quantity, an increase in activity, or a modification of one molecule by the other. In addition, enzymes in bioregulatory networks are often substrates of other enzymes, and molecules are often subject to modifications that change their binding or enzymatic capabilities. Moreover, regulatory proteins can form multi-molecular complexes, which have different activities, depending on their composition and modifications. Finally, each domain within a regulatory molecule may have its own binding, modification, and/or enzymatic functions. Thus, a molecule's activity and interaction capabilities may depend on its modification state, and on the other molecules to which it may be bound. All of these interactions must be taken into account for a full understanding of the system. In the MIM language, we use a small number of defined, unambiguous graphical symbols to portray each type of molecular interaction. Each molecule is represented in a single place in a diagram, and interactions between molecules are specified by arrows or bars at the end of connecting lines. Because modified molecules and multi-molecular complexes may have different properties than the original molecules, the outcome of each interaction (such as a phosphorylated molecule, or a multi-molecular complex) is depicted as a circle, or "node" on an interaction line. These nodes are treated in a way that allows them to form more interactions and extend the network. The symbols and conventions used in the language, as well as examples of MIMs, can be accessed at our Web site: http://discover.nci.nih.gov/mim and in an article describing the principles of the MIM language. The graphical MIM language allows a simultaneous view of many interactions involving any given molecule. It can portray competing interactions, which are common in bioregulatory networks. An interested researcher can trace all the interactions of a given molecule from a single location. Readers can look up a molecule in a glossary, or in the electronic (eMIM) diagrams, a mouse-click on the molecule name opens links to more information. Each interaction is labeled with a link to an annotated description, which includes links to cited references. The interested researcher can read the annotations to gain in-depth information on each molecular interaction, or browse the various maps to become acquainted with the general concept of how cells regulate a particular metabolic process. For example, the eMIM depicting the early stages in DNA replication features all the possible molecular interactions between molecules involved in the process; additional maps represent subsets of interactions that occur during specific stages of the cell cycle and in response to cellular stress. We compile and update maps of the major biological control systems, and work to post them on a Web site for the use of the general public and to integrate them in a concise manner. We may then discern common patterns of molecular interaction logic that give bioregulatory networks their remarkable flexibility and robustness. To elucidate the logic of signaling pathways from the multitude of molecular interactions depicted in the MIMs, we are interacting with a multidisciplinary group of researchers to develop MIM-based computer simulations. Such tools will illustrate the processes by which cells govern DNA replication and cell cycle progression and may help us understand the perturbations in cell cycle progression that occur in cancer cells and underlie the sensitivity of these cells to anti-tumor drugs.
为了进一步了解生物调节网络如何控制正常细胞和癌细胞的细胞周期,我们与一个跨学科团队合作,生成了电子分子相互作用图(MIMs),显示了细胞周期调节途径在正常生长和细胞周期紊乱条件下的行为。这些努力有助于开发生物信息学工具,组织大量事实,包括相互作用调节分子网络的描述,多蛋白复合物,蛋白质修饰(例如,磷酸化)等。组织分子知识的主要障碍之一是缺乏一种通用语言,使科学家能够以一种清晰、标准化、最好是计算机可读的格式整合数据。为此,我们实现了分子相互作用图(Molecular Interaction Map, MIM)语言,这是一种由Kurt Kohn首先提出的图解注释,它以图的形式编码分子信息(分子相互作用图或MIM)。这些mimm用于表示和分析分子相互作用,其方式与电路图用于排除电子设备故障的方式相同。研究者通常用卡通般的图表来描述生化途径,但这些分子相互作用的表征往往是不完整和模糊的。例如,两个成分之间的箭头可能表示数量的增加,活性的增加,或者一个分子被另一个分子修饰。此外,生物调节网络中的酶通常是其他酶的底物,并且分子经常受到改变其结合或酶促能力的修饰。此外,调节蛋白可以形成多分子复合物,根据它们的组成和修饰,这些复合物具有不同的活性。最后,调控分子中的每个结构域可能有其自身的结合、修饰和/或酶促功能。因此,分子的活性和相互作用能力可能取决于它的修饰状态,以及它可能与之结合的其他分子。为了充分理解系统,必须考虑到所有这些相互作用。在MIM语言中,我们使用少量已定义的、明确的图形符号来描述每种类型的分子相互作用。每个分子在图中的单个位置表示,分子之间的相互作用由连接线末端的箭头或条形表示。由于修饰的分子和多分子复合物可能具有与原始分子不同的性质,因此每个相互作用的结果(例如磷酸化的分子或多分子复合物)被描述为相互作用线上的圆圈或“节点”。这些节点的处理方式允许它们形成更多的交互并扩展网络。该语言中使用的符号和约定以及MIM的示例可以在我们的网站http://discover.nci.nih.gov/mim和描述MIM语言原理的文章中访问。图形化的MIM语言允许同时查看涉及任何给定分子的许多相互作用。它可以描述竞争相互作用,这在生物调节网络中很常见。感兴趣的研究人员可以从一个位置追踪给定分子的所有相互作用。读者可以在术语表或电子(eMIM)图中查找分子,鼠标点击分子名称会打开更多信息的链接。每个交互都标有一个指向注释描述的链接,其中包括指向引用引用的链接。感兴趣的研究人员可以阅读注释以获得每个分子相互作用的深入信息,或浏览各种地图以熟悉细胞如何调节特定代谢过程的一般概念。例如,描述DNA复制早期阶段的eMIM以参与该过程的分子之间所有可能的分子相互作用为特征;其他的图谱代表了在细胞周期的特定阶段和细胞应激反应中发生的相互作用的子集。我们编制和更新了主要生物防治系统的地图,并努力将它们发布在一个网站上,供公众使用,并以简明的方式将它们整合起来。然后,我们可能会发现分子相互作用逻辑的共同模式,使生物调节网络具有非凡的灵活性和稳健性。为了阐明MIMs中描述的众多分子相互作用的信号通路逻辑,我们正在与一个多学科研究小组进行互动,以开发基于MIMs的计算机模拟。这些工具将阐明细胞控制DNA复制和细胞周期进程的过程,并可能帮助我们理解癌细胞中发生的细胞周期进程中的扰动,以及这些细胞对抗肿瘤药物敏感性的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
mirit aladjem其他文献
mirit aladjem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('mirit aladjem', 18)}}的其他基金
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
8552687 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
8348998 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
10926012 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
- 批准号:
7733086 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
10014364 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory
分子相互作用图谱和生物调节分析
- 批准号:
7338658 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
- 批准号:
8763137 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Molecular Interaction Maps and Analysis of Bioregulatory Networks
分子相互作用图谱和生物调节网络分析
- 批准号:
8937770 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
8937729 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
Initiation of DNA Replication in Mammalian Cells
哺乳动物细胞中 DNA 复制的启动
- 批准号:
7965300 - 财政年份:
- 资助金额:
$ 10.74万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 10.74万 - 项目类别:
Research Grant