Paramyxoviruses as Vaccine Vectors Against Highly Pathogenic Viruses
副粘病毒作为高致病性病毒的疫苗载体
基本信息
- 批准号:7964502
- 负责人:
- 金额:$ 142.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AdultAerosolsAffectAnimalsAntibodiesAntibody FormationAntigensAttenuatedAvian Influenza A VirusAvulavirusBiological AssayBirdsCause of DeathCaviaCellsCercopithecus pygerythrusChickensChildhoodClinicalControl AnimalCoronavirusDNADevelopmentDiseaseDisease OutbreaksDistalDoseEbola virusEbola virus envelope glycoproteinEngineeringEnzyme-Linked Immunosorbent AssayEvaluationExperimental Animal ModelFaceGene ExpressionGenesGeneticGenetic RecombinationGenetic VariationGenomeGlycoproteinsGoalsHemagglutininHumanHuman VirusHuman VolunteersImmuneImmune responseImmunityImmunizationImmunoglobulin AImmunoglobulin GIn VitroIncidenceInfectionInfectious AgentInfluenza A Virus, H5N1 SubtypeIntranasal AdministrationIrrigationLaboratoriesLifeLungMacaca mulattaMeasles virusMembrane ProteinsMethodsModelingNatural HistoryNebulizerNeuraminidaseNewcastle disease virusNosePara-Influenza Virus Type 3ParamyxovirusPathogenicityPropertyProteinsRNARNA VirusesRecombinantsRespiratory SystemRespiratory tract structureReverse Transcriptase Polymerase Chain ReactionRouteSafetySequence AnalysisSerotypingSerumSevere Acute Respiratory SyndromeSiteSurface AntigensSwabSyndromeSystemTestingTimeTissue HarvestingTissuesVaccinesVertebral columnViralViral Hemorrhagic FeversViral VectorVirulenceVirusattenuationbaseclinically relevantdesigneggexperienceimmunogenicimmunogenicityimprovedneutralizing antibodynonhuman primatepathogenpositional cloningprotective efficacyprototyperecombinant virusrespiratoryresponsevaccine developmentvaccine safetyvectorvector vaccinevirus genetics
项目摘要
This project involves evaluating common human and animal paramyxoviruses as potential human vaccine vectors against highly pathogenic viruses. We previously evaluated human parainfluenza virus type 3 (HPIV3) as a vector to express the spike glycoprotein of Severe Acute Respiratory Syndrome Coronavirus (SARS). A single dose of the HPIV3-S construct administered by the combined intranasal (IN) and intratracheal (IT) routes was immunogenic and protective against SARS challenge in African green monkeys (AGM). We also previously evaluated HPIV3 as a vector to express the single glycoprotein GP of Ebola virus (EBOV). This construct was highly immunogenic and completely protective in guinea pigs against an adapted strain of EBOV. A single IN/IT inoculation of rhesus monkeys was moderately immunogenic against EBOV and protected 88% of the animals against severe hemorrhagic fever and death caused by EBOV challenge. Two doses were highly immunogenic and all of the animals were free of disease signs and detectable EBOV challenge virus.
Since HPIV3 is a common human pathogen and essentially all adults have a history of natural infection with HPIV3, it was important to determine whether previous infection with HPIV3 would restrict the replication and immunogenicity of the HPIV3 vector. In guinea pigs that were infected with HPIV3 and challenged 40 days later with HPIV3/EboGP, replication of the vector could not be detected, indicating a high level of restriction. Surprisingly, however, the immune response to EBOV GP was almost equivalent to that achieved in control animals that had not been previously infected with HPIV3. Next, rhesus monkeys were infected twice with HPIV3 and, 11 months following the second infection, were immunized with two doses of HPIV3/EboGP given 4 weeks apart. ELISA assay of EBOV-specific serum IgG and IgA showed that the level of EBOV-specific serum antibodies following the first dose was reduced 10-15 fold compared to the response in control animals that were HPIV3-nave. However, the serum antibody responses following the second dose were indistinguishable in HPIV3-immune versus HPIV3-naive animals. Thus, an HPIV3-based vector was substantially immunogenic even in the face of strong pre-existing immunity to the vector.
Next, we deleted the F and HN genes from HPIV3 and replaced them with EBOV GP to create a virus, HPIV3/delF-HN/EboGP, in which GP would be the sole viral transmembrane surface protein. This virus was attenuated in vitro but eventually reached titers comparable to those of HPIV3. Following IN infection of guinea pigs, this virus was highly attenuated and completely restricted to the respiratory tract but nonetheless was highly immunogenic. A single IN dose provided complete protection of guinea pigs against an otherwise lethal challenge of guinea pig-adapted EBOV. Lacking the HPIV3 neutralization antigens, HPIV3/delF-HN/EboGP was insensitive to neutralization by HPIV3-specific antibodies in vitro. In addition, there was no significant difference in its immunogenicity in guinea pigs that were HPIV3-naive versus HPIV3-immune. Thus, HPIV3/delF-HN/EboGP provides an alternative to HPIV3/EboGP that is very highly attenuated, is insensitive to HPIV3-neutralizing antibodies, and nonetheless is nearly as immunogenic.
We also are investigating the use of the avian Newcastle disease virus (NDV) as a human vaccine vector. NDV is antigenically distinct from common human pathogens and thus should not be affected by pre-existing immunity. In addition, there is anecdotal evidence that NDV is highly restricted in humans and does not cause significant disease. We confirmed that NDV is very highly attenuated following IN/IT inoculation of rhesus monkeys and AGM. We found that both low-virulence (lentogenic) and intermediate-virulence (mesogenic) strains replicated to similar low titers in non-human primates, suggesting that either backbone should be suitable for human vaccine purposes. Despite the high level of attenuation, which would be predictive of a high level of vaccine safety, expressed foreign proteins were moderately-to-highly immunogenic. For example, AGM that were immunized IN and IT with two doses of NDV expressing the SARS S protein developed a high titer of SARS-neutralizing serum antibodies and were strongly protected against challenge with a high dose of SARS. Another NDV was engineered to express the hemagglutinin HA glycoprotein of highly pathogenic avian H5N1 influenza virus (HPAIV) (NDV-HA). The NDV-HA virus was highly attenuated in AGM as well as in eggs and chickens. In AGM, two doses of NDV-HA induced a substantial titer of HPAIV-neutralizing serum antibodies; in addition, a substantial respiratory mucosal IgA response was induced following one and two doses, which would be particularly important in controlling a respiratory pathogen. We established a challenge model using AGM and showed that two doses of NDV-HA conferred essentially complete protection against challenge with a high dose (7.2 log10 PFU) of HPAIV. The high level of restriction of HPAIV challenge virus was established by assay of nasal swabs and tracheal lavages for virus by infectious virus assay and RT-PCR, by direct assay for infectious virus in harvested tissue, by immunohistochemical analysis of harvested tissue, and by profiling challenge-induced pulmonary host gene expression. Replacement of the polybasic cleavage site of the HA insert with the monobasic site from a low pathogenicity strain, an expedient designed to preclude any possibility of introduction of the polybasic site into circulating viruses by genetic exchange, resulted in improved immunogenicity and protective efficacy in this small study. In addition, immunization with NDV expressing the other major HPAIV surface antigen, the neuraminidase (NA) protein, also was highly immunogenic and protective. This was somewhat surprising, since the NA protein had not been considered to be a potent neutralization or protective antigen. These results showed that the modified HA gene and the NA gene are the genes of choice for inclusion in a vectored vaccine for human use.
IN administration would be feasible in humans, but IT administration would not. We evaluated IN administration of the NDV construct expressing the SARS S protein and found it was not very immunogenic or protective, presumably because of insufficient vector replication in the nasal passages. Whether or not this will be predictive of replicative capability and immunogenicity in humans is unclear and can only be determined by administration to human volunteers. In the meantime, we explored an additional method of administration, namely by aerosol generated using a nebulizer. This method has been successfully and safely used in large-scale immunization against measles virus. This method of administration proved to be immunogenic and highly protective in AGM, providing a clinically relevant alternative to IN administration.
In summary, NDV has considerable potential for further development as a highly attenuated vector for human vaccine use.
NDV represents serotype 1 of the avian paramyxoviruses (APMV). There are 8 other serotypes, namely APMV2-9. We have initiated antigenic and sequence analysis of these as a prelude to their evaluation for attenuation and safety in non-human primates as potential vectors. Complete sequences have been determined for representatives of APMV2, 3, 4, 7, 8, and 9. In some cases, complete sequences are available for more than one strain of a serotype, namely APMV2 (2 strains), APMV3 (2 strains), and APMV8 (2 strains). Sequences already were available for two strains of APMV6: we have analyzed 2 more in addition. Also, sequencing of APMV5 is almost complete. The purpose in analyzing multiple strains is to investigate genetic diversity suggested by observed phenotypic and/or genetic diversity
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER LEON COLLINS其他文献
PETER LEON COLLINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER LEON COLLINS', 18)}}的其他基金
FUNCTIONS OF THE PROTEINS OF HUMAN RESPIRATORY SYNCYTIAL VIRUS
人呼吸道合胞病毒蛋白质的功能
- 批准号:
6098950 - 财政年份:
- 资助金额:
$ 142.51万 - 项目类别:
REPLICATION,VIRULENCE & IMMUNOGENICITY IN RECOMBINANT RESPIRATORY SYNCYTIAL V
复制、毒力
- 批准号:
6098927 - 财政年份:
- 资助金额:
$ 142.51万 - 项目类别:
STRUCTURAL ANALYSIS OF THE GENOME OF RESPIRATORY SYNCYTIAL VIRUS
呼吸道合胞病毒基因组的结构分析
- 批准号:
6288840 - 财政年份:
- 资助金额:
$ 142.51万 - 项目类别:
FUNCTIONS OF THE PROTEINS OF HUMAN RESPIRATORY SYNCYTIAL VIRUS
人呼吸道合胞病毒蛋白质的功能
- 批准号:
6288863 - 财政年份:
- 资助金额:
$ 142.51万 - 项目类别:
FUNCTIONS OF THE PROTEINS OF HUMAN RESPIRATORY SYNCYTIAL VIRUS
人呼吸道合胞病毒蛋白质的功能
- 批准号:
6431577 - 财政年份:
- 资助金额:
$ 142.51万 - 项目类别:
Paramyxoviruses as Vaccine Vectors Against Highly Pathogenic Viruses
副粘病毒作为高致病性病毒的疫苗载体
- 批准号:
9566628 - 财政年份:
- 资助金额:
$ 142.51万 - 项目类别:
Laboratory Studies of Human Respiratory Syncytial Virus and Other Pneumoviruses
人类呼吸道合胞病毒和其他肺病毒的实验室研究
- 批准号:
8946258 - 财政年份:
- 资助金额:
$ 142.51万 - 项目类别:
Laboratory Studies of Human Respiratory Syncytial Virus and Other Pneumoviruses
人类呼吸道合胞病毒和其他肺病毒的实验室研究
- 批准号:
8745290 - 财政年份:
- 资助金额:
$ 142.51万 - 项目类别:
相似海外基金
AEROSOLS - AIR QUALITY AND HEALTH IMPACT OF PRIMARY SEMI-VOLATILE AND SECONDARY PARTICLES AND THEIR ABATEMENT
气溶胶 - 一次半挥发性颗粒和二次颗粒对空气质量和健康的影响及其消除
- 批准号:
10092043 - 财政年份:2024
- 资助金额:
$ 142.51万 - 项目类别:
EU-Funded
Molecular-level Understanding Of Atmospheric Aerosols (MUOAA 2024); Corsica, France; April 1-5, 2024
对大气气溶胶的分子水平理解(MUOAA 2024);
- 批准号:
2332007 - 财政年份:2024
- 资助金额:
$ 142.51万 - 项目类别:
Standard Grant
TWISTA (The Wide-ranging Impacts of STratospheric smoke Aerosols)
TWISTA(平流层烟雾气溶胶的广泛影响)
- 批准号:
NE/Y000021/1 - 财政年份:2024
- 资助金额:
$ 142.51万 - 项目类别:
Research Grant
TWISTA (The Wide-ranging Impacts of STratospheric smoke Aerosols)
TWISTA(平流层烟雾气溶胶的广泛影响)
- 批准号:
NE/Y000358/1 - 财政年份:2024
- 资助金额:
$ 142.51万 - 项目类别:
Research Grant
Southern Ocean aerosols: sources, sinks and impact on cloud properties
南大洋气溶胶:来源、汇以及对云特性的影响
- 批准号:
DP240100389 - 财政年份:2024
- 资助金额:
$ 142.51万 - 项目类别:
Discovery Projects
An AI-driven clinical washbasin unit that automatically disinfects pathogens, reduces aerosols and decreases healthcare-acquired infections by 70%
%20人工智能驱动%20临床%20洗脸盆%20单位%20%20自动%20消毒%20病原体,%20减少%20气溶胶%20和%20减少%20医疗保健获得性%20感染%20by%2070%
- 批准号:
83001507 - 财政年份:2023
- 资助金额:
$ 142.51万 - 项目类别:
Innovation Loans
Cloudbusting with JWST: characterising aerosols, aurorae and chemistry in substellar atmospheresto the water cloud regime
使用 JWST 进行云消除:描述水云状态下恒星大气中的气溶胶、极光和化学成分
- 批准号:
ST/X001091/1 - 财政年份:2023
- 资助金额:
$ 142.51万 - 项目类别:
Research Grant
INvestigating Home water and Aerosols' Links to opportunistic pathogen Exposure (INHALE): do consumer decisions impact pathogen exposure and virulence?
调查家庭用水和气溶胶与机会性病原体暴露(吸入)的联系:消费者的决定是否会影响病原体暴露和毒力?
- 批准号:
2326096 - 财政年份:2023
- 资助金额:
$ 142.51万 - 项目类别:
Standard Grant
Bioactivated Aerosols for Combustion Product Capture
用于燃烧产物捕获的生物活性气溶胶
- 批准号:
10080253 - 财政年份:2023
- 资助金额:
$ 142.51万 - 项目类别:
Small Business Research Initiative














{{item.name}}会员




