Blood Systems Biology
血液系统生物学
基本信息
- 批准号:7934185
- 负责人:
- 金额:$ 77.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAgeAgingAgonistAlgorithmsAntibodiesAntiplatelet DrugsBiological AssayBiological Neural NetworksBiologyBiomedical EngineeringBloodBlood ClotBlood PlateletsBlood coagulationBlood specimenCalciumCalibrationClinicalCoagulation ProcessCodeCollagenComplexComputer SimulationConvectionCytoplasmic GranulesDataData SetDatabasesDefectDepositionDevelopmentDiamondDiffusionDiseaseEpoprostenolEpoprostenol ReceptorsEthnic OriginEthnic groupEventF2R geneFeedbackFemaleFlow CytometryGender RoleGenomicsGrowthHematocrit procedureHemorrhageHumanIn VitroIndividualIntegrinsKineticsLaser injuryLiquid substanceMapsMeasurementMeasuresMetabolic PathwayMetabolismMicrofluidic MicrochipsMicrofluidicsModelingMonitorMusMutationNeural Network SimulationOperative Surgical ProceduresP-SelectinPAWR genePathway interactionsPatientsPeptide HydrolasesPhenotypePhosphatidylserinesPlasmaPlatelet ActivationProbabilityProductionReactionResearchRisk AssessmentScanningSignal PathwaySignal TransductionSimulateStagingStenosisSurfaceSystems BiologyTestingThrombinThromboplastinThrombosisThrombusTimeTimeLineTracerTrainingTransgenic MiceVWF geneValidationVenousbrassclinically relevantcombinatorialexperiencehemodynamicsin vivoinhibitor/antagonistloss of function mutationmalemouse modelpublic health relevancereceptorrelease of sequestered calcium ion into cytoplasmresearch studyresponsesimulationstroke therapysynergismvectorweb site
项目摘要
DESCRIPTION (provided by applicant): This proposal focuses on the integrative and high throughput functional phenotyping of human blood, matched by Systems Biology and Bioengineering approaches for patient-specific training of computer models to identify and quantify responses to clotting triggers or pharmacological agents. High throughput phenotyping of individual blood samples will be used to train bottom-up and top-down models of blood clotting under static, venous, and arterial hemodynamic conditions. Specific Aims are: Aim 1: Use high throughput intracellular calcium measurements to train neural network models to predict patient-specific response to combinatorial and sequential stimulation, thus testing the milieu that platelets actually experience during thrombosis. Furthermore, high throughput measures of inside-out signaling will be implemented for the development of large scale computational simulation of platelet metabolic pathways. Aim 2: Along with platelet phenotyping, we will use validated high throughput blood thrombin phenotyping to identify pathways and synergisms that are defective in patients with existing but undefined defects. These approaches then allow the development of a full platelet-plasma computer simulation of coagulation. Aim 3: Using validated tissue factor microarray-flow chambers and microfluidic chambers, we will functionally phenotype thrombus production and clot stability for normal donors and patients under hemodynamic conditions and pharmacological modulation. Aim 4: In vivo studies using a mouse laser injury model to follow evolving intrathrombic spatial gradients. The flow studies are supported by advanced multiscale Lattice Kinetic Monte Carlo (LKMC) simulation of clotting under flow using data from all three specific aims. These approaches represent the first full integration of platelet signaling models with realistic and hierarchical hemodynamic/mass transport simulations that regulate adhesive bond function and plasma protease networks. Better elucidation and quantitative measurement of blood reactions and platelet signaling pathways under hemodynamic conditions are directed at clinical needs in thrombosis risk assessment, anti-coagulation therapy during surgery, platelet targeted therapies, and stroke research.
PUBLIC HEALTH RELEVANCE: Blood is ideal for Systems Biology research since it is easily obtained from donors or patients, amenable to high throughput liquid handling experiments, and clinically relevant. Clotting and bleeding diseases of aging are seldom due to acquired mutations and this drives the need for advanced functional phenotyping in concert with Systems Biology and other sequencing/genomic approaches.
描述(由申请人提供):这项建议侧重于人类血液的综合和高通量功能表型分析,与系统生物学和生物工程方法相匹配,用于针对患者特定的计算机模型培训,以识别和量化对凝血触发因素或药理制剂的反应。高通量的个体血样表型将被用来训练静态、静脉和动脉血流动力学条件下的自下而上和自上而下的血液凝固模型。具体目标是:目标1:使用高通量细胞内钙测量来训练神经网络模型,以预测患者对组合和顺序刺激的特定反应,从而测试血小板在血栓形成期间实际经历的环境。此外,将实施由内向外信号的高通量措施,以发展大规模的血小板代谢途径的计算模拟。目的2:结合血小板表型,我们将使用有效的高通量血凝血酶表型来确定在存在但未明确缺陷的患者中存在缺陷的途径和协同作用。然后,这些方法可以开发出完全的血小板-血浆凝血的计算机模拟。目的:利用经过验证的组织因子微阵列流动小室和微流控小室,在血流动力学和药物调节的条件下,对正常供者和患者的血栓形成和凝块稳定性进行功能表型分析。目的4:使用小鼠激光损伤模型进行体内研究,以跟踪血栓内空间梯度的演变。流动研究得到了先进的多尺度格子动力学蒙特卡罗(LKMC)流动下凝结模拟的支持,该模拟使用了所有三个特定目标的数据。这些方法代表了首次将血小板信号模型与现实的、分级的血液动力学/质量运输模拟完全集成在一起,这些模拟调节粘连功能和血浆蛋白酶网络。更好地阐明和定量测量血液动力学条件下的血液反应和血小板信号通路,旨在满足血栓形成风险评估、术中抗凝治疗、血小板靶向治疗和中风研究的临床需求。
公共卫生相关性:血液是系统生物学研究的理想选择,因为它很容易从捐赠者或患者那里获得,易于接受高通量液体处理实验,并且具有临床意义。衰老的凝血和出血疾病很少是由于获得性突变引起的,这促使了与系统生物学和其他测序/基因组方法相结合的先进功能表型的需要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT L DIAMOND其他文献
SCOTT L DIAMOND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT L DIAMOND', 18)}}的其他基金
Neonatal and Pediatric Platelet Function and Pharmacology
新生儿和儿童血小板功能和药理学
- 批准号:
9759659 - 财政年份:2018
- 资助金额:
$ 77.19万 - 项目类别:
Neonatal and Pediatric Platelet Function and Pharmacology
新生儿和儿童血小板功能和药理学
- 批准号:
9292339 - 财政年份:2015
- 资助金额:
$ 77.19万 - 项目类别:
Neonatal and Pediatric Platelet Function and Pharmacology
新生儿和儿童血小板功能和药理学
- 批准号:
8908392 - 财政年份:2015
- 资助金额:
$ 77.19万 - 项目类别:
Neonatal and Pediatric Platelet Function and Pharmacology
新生儿和儿童血小板功能和药理学
- 批准号:
9103240 - 财政年份:2015
- 资助金额:
$ 77.19万 - 项目类别:
Core C: Genomics and High Throughput Screening Core
核心 C:基因组学和高通量筛选核心
- 批准号:
8066104 - 财政年份:2010
- 资助金额:
$ 77.19万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 77.19万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 77.19万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 77.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 77.19万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 77.19万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 77.19万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 77.19万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 77.19万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 77.19万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 77.19万 - 项目类别:
Investment Accelerator