Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction

使用压缩感知和约束重建加速神经 MRA

基本信息

  • 批准号:
    8068658
  • 负责人:
  • 金额:
    $ 33.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-01 至 2014-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Magnetic resonance imaging (MRI) is the standard of care for most diagnostic neurological imaging, but with certain notable shortcomings. Cerebral aneurysms, still first often diagnosed either by sudden death or catastrophic hemorrhage, are best visualized with the resolution provided by computed tomography or digital subtraction angiography (DSA). The speed of MRI is often not enough to visualize the arterial inputs and venous drainage of arterial-venous malformations (AVM). Ischemic stroke is the most common neurological disorder worldwide and intracranial arterial stenosis is a major risk factor for ischemic stroke. In order to improve confidence of diagnosis and provide early detection of the pathological changes in the cerebrovascular system, significant advances should be made towards spatial and temporal resolutions currently unavailable even with state-of-art MRA techniques. We have been developing acquisition and reconstruction methods that circumvent MRI shortcomings in speed and resolution to provide multi-dimensional physiological and anatomical information for neurovascular imaging. We have recognized that in order to achieve the required combinations of spatial and temporal resolution and signal-to-noise ratio we need to exploit the synergy of complementary advanced image acquisition and reconstruction techniques. Image estimation methods developed in our labs combine constrained reconstruction algorithms with non-Cartesian radial trajectories whose variable sampling density allows for both high quality extended scans and time-resolved imaging. We have already successfully developed the first generation of this technology known as the HYPR (HighlY constrained back Projection) family of imaging techniques, delivering substantial acceleration to the acquisition of serially acquired images. This proposal suggests a next generation of accelerated imaging technology for the comprehensive evaluation of vessel stenoses, aneurysms, and AVMs that will rival and surpass CT through the development of new image acquisition and reconstruction methods. These methods will utilize independent and symbiotic acceleration mechanisms of optimized radial trajectories, parallel imaging, and constrained reconstruction, including HYPR and advanced compressed sensing algorithms. These algorithms will also be supplied with data from novel highly accelerated acquisition methods: 1) a contrast-free inflow technique that eliminates the dispersion of contrast-enhanced bolus to provide superb arterial isolation, high resolution, and coverage; and 2) high quality time-averaged vascular image volumes to constrain reconstruction of time-resolved contrast- enhanced data. These methods will be evaluated in the treatment and tracking of AVMs, the evaluation of vascular stenoses and the evaluation of cerebral aneurysms. Successful completion would supplement the arsenal of tools used in stroke management as well. PUBLIC HEALTH RELEVANCE: The enormous economic and social burden of stroke demands better imaging tools to assess the cerebrovascular system. Our proposal entitled "Accelerated Neuro MRA using Compressed Sensing and Constrained Reconstruction" introduces innovative methods to safely visualize the vascular structures of the brain. Our proposed techniques have benefits over current MRA methods in that they provides greater temporal information, high spatial resolution and flow information. The techniques are of minimal risk compared to conventional catheter based X-ray angiography and are thus better suited for the evaluation of atherosclerotic disease in elderly patients. The MRA methods described in this proposal are major advances in the evaluation of patients with atherosclerotic disease, brain aneurysms and vascular malformations, which are the leading causes of stoke in the US.
描述(由申请人提供):磁共振成像(MRI)是大多数诊断神经成像的护理标准,但具有某些显着的缺点。脑动脉瘤最初的诊断通常是猝死或灾难性出血,但最好通过计算机断层扫描或数字减影血管造影 (DSA) 提供的分辨率进行可视化。 MRI 的速度通常不足以可视化动静脉畸形 (AVM) 的动脉输入和静脉引流。缺血性中风是全世界最常见的神经系统疾病,颅内动脉狭窄是缺血性中风的主要危险因素。为了提高诊断的可信度并及早发现脑血管系统的病理变化,即使采用最先进的 MRA 技术,也应在空间和时间分辨率方面取得重大进展。我们一直在开发采集和重建方法,克服 MRI 在速度和分辨率方面的缺点,为神经血管成像提供多维生理和解剖信息。我们已经认识到,为了实现所需的空间和时间分辨率以及信噪比的组合,我们需要利用互补的先进图像采集和重建技术的协同作用。我们实验室开发的图像估计方法将约束重建算法与非笛卡尔径向轨迹相结合,其可变采样密度允许高质量扩展扫描和时间分辨成像。我们已经成功开发了第一代技术,称为 HYPR(高度约束背投)成像技术系列,为连续采集图像的采集提供了显着的加速。该提案提出了用于综合评估血管狭窄、动脉瘤和动静脉畸形的下一代加速成像技术,通过开发新的图像采集和重建方法,该技术将与 CT 相媲美并超越。这些方法将利用优化径向轨迹、并行成像和约束重建的独立和共生加速机制,包括 HYPR 和先进的压缩感知算法。这些算法还将提供来自新颖的高度加速采集方法的数据:1)无造影剂流入技术,消除造影剂增强团注的分散,以提供出色的动脉隔离、高分辨率和覆盖范围; 2) 高质量时间平均血管图像体积,以限制时间分辨对比度增强数据的重建。这些方法将在动静脉畸形的治疗和追踪、血管狭窄的评估和脑动脉瘤的评估中进行评估。成功完成也将补充中风管理中使用的工具库。 公共卫生相关性:中风带来的巨大经济和社会负担需要更好的成像工具来评估脑血管系统。我们题为“使用压缩感知和约束重建的加速神经 MRA”的提案引入了安全可视化大脑血管结构的创新方法。我们提出的技术比当前的 MRA 方法具有优势,因为它们提供了更多的时间信息、高空间分辨率和流量信息。与传统的基于导管的 X 射线血管造影术相比,该技术的风险最小,因此更适合评估老年患者的动脉粥样硬化疾病。该提案中描述的 MRA 方法是评估动脉粥样硬化性疾病、脑动脉瘤和血管畸形患者的重大进展,这些疾病是美国中风的主要原因。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles A. Mistretta其他文献

Charles A. Mistretta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles A. Mistretta', 18)}}的其他基金

4D DSA and 4D Fluoroscopy: Validation of Diagnostic and Therapeutic Capabilities
4D DSA 和 4D 透视:诊断和治疗能力的验证
  • 批准号:
    8608595
  • 财政年份:
    2013
  • 资助金额:
    $ 33.65万
  • 项目类别:
4D DSA and 4D Fluoroscopy: Validation of Diagnostic and Therapeutic Capabilities
4D DSA 和 4D 透视:诊断和治疗能力的验证
  • 批准号:
    8418589
  • 财政年份:
    2013
  • 资助金额:
    $ 33.65万
  • 项目类别:
Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction
使用压缩感知和约束重建加速神经 MRA
  • 批准号:
    7987640
  • 财政年份:
    2010
  • 资助金额:
    $ 33.65万
  • 项目类别:
Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction
使用压缩感知和约束重建加速神经 MRA
  • 批准号:
    8459451
  • 财政年份:
    2010
  • 资助金额:
    $ 33.65万
  • 项目类别:
Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction
使用压缩感知和约束重建加速神经 MRA
  • 批准号:
    8252164
  • 财政年份:
    2010
  • 资助金额:
    $ 33.65万
  • 项目类别:
HighlY constrained backPRojection (HYPR) for Ultrafast Undersampled MRI
用于超快欠采样 MRI 的高度约束反投影 (HYPR)
  • 批准号:
    7258172
  • 财政年份:
    2007
  • 资助金额:
    $ 33.65万
  • 项目类别:
HighlY constrained backPRojection (HYPR) for Ultrafast Undersampled MRI
用于超快欠采样 MRI 的高度约束反投影 (HYPR)
  • 批准号:
    7362406
  • 财政年份:
    2007
  • 资助金额:
    $ 33.65万
  • 项目类别:
Phase Contrast Imaging using Isotropic Projection
使用各向同性投影的相差成像
  • 批准号:
    7048626
  • 财政年份:
    2003
  • 资助金额:
    $ 33.65万
  • 项目类别:
Phase Contrast Imaging using Isotropic Projection
使用各向同性投影的相差成像
  • 批准号:
    6733552
  • 财政年份:
    2003
  • 资助金额:
    $ 33.65万
  • 项目类别:
Phase Contrast Imaging using Isotropic Projection
使用各向同性投影的相差成像
  • 批准号:
    6881540
  • 财政年份:
    2003
  • 资助金额:
    $ 33.65万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了