Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction
使用压缩感知和约束重建加速神经 MRA
基本信息
- 批准号:8459451
- 负责人:
- 金额:$ 34.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsAneurysmAngiographyArteriesArteriovenous malformationArtsBackBlood VesselsBolus InfusionBrainBrain AneurysmsCathetersCerebral AneurysmCerebrovascular systemClinicalDataDevelopmentDiagnosisDiagnosticDigital Subtraction AngiographyDiseaseDrainage procedureEarly DiagnosisEconomicsEvaluationFamilyFundingGenerationsGrantHeadHemorrhageImageImaging DeviceImaging TechniquesImaging technologyIndividualInjection of therapeutic agentIntravenous BolusIschemic StrokeMagnetic Resonance AngiographyMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsMorphologic artifactsNeurologicNoisePatientsPerformancePhysiologicalPilot ProjectsProcessProtocols documentationRadialResolutionRisk FactorsRoentgen RaysSamplingScanningSchemeSeriesSignal TransductionSpeedSpin LabelsStenosisStrokeStructureSudden DeathTechniquesTechnologyTimeVeinsVenousVenous MalformationX-Ray Computed Tomographyabstractingbasedensitydigitalhuman subjectimage reconstructionimprovedinnovationmalformationminimal risknervous system disordernext generationnovelolder patientreconstructionsimulationsocialstandard of caretime usetoolvolunteer
项目摘要
Abstract
Magnetic resonance imaging (MRI) is the standard of care for most diagnostic neurological imaging, but with
certain notable shortcomings. Cerebral aneurysms, still first often diagnosed either by sudden death or
catastrophic hemorrhage, are best visualized with the resolution provided by computed tomography or digital
substraction angiography (DSA). The speed of MRI is often not enough to visualize the arterial inputs and
venous drainage of arterial-venous malformations (AVM). Ischemic stroke is the most common neurological
disorder worldwide and intracranial arterial stenosis is a major risk factor for ischemic stroke. In order to
improve confidence of diagnosis and provide early detection of the pathological changes in the
cerebrovascular system, significant advances should be made towards spatial and temporal resolutions
currently unavailable even with state-of-art MRA techniques.
We have been developing acquisition and reconstruction methods that circumvent MRI shortcomings in speed
and resolution to provide multi-dimensional physiological and anatomical information for neurovascular
imaging. We have recognized that in order to achieve the required combinations of spatial and temporal
resolution and signal-to-noise ratio we need to exploit the synergy of complementary advanced image
acquisition and reconstruction techniques. Image estimation methods developed in our labs combine
constrained reconstruction algorithms with non-Cartesian radial trajectories whose variable sampling density
allows for both high quality extended scans and time-resolved imaging. We have already successfully
developed the first generation of this technology known as the HYPR (HighlY constrained back Projection)
family of imaging techniques, delivering substantial acceleration to the acquisition of serially acquired images.
This proposal suggests a next generation of accelerated imaging technology for the comprehensive evaluation
of vessel stenoses, aneurysms, and AVMs that will rival and surpass CT through the development of new
image acquisition and reconstruction methods. These methods will utilize independent and symbiotic
acceleration mechanisms of optimized radial trajectories, parallel imaging, and constrained reconstruction,
including HYPR and advanced compressed sensing algorithms. These algorithms will also be supplied with
data from novel highly accelerated acquisition methods: 1) a contrast-free inflow technique that eliminates the
dispersion of contrast-enhanced bolus to provide superb arterial isolation, high resolution, and coverage; and
2) high quality time-averaged vascular image volumes to constrain reconstruction of time-resolved contrast-
enhanced data. These methods will be evaluated in the treatment and tracking of AVMs, the evaluation of
vascular stenoses and the evaluation of cerebral aneurysms. Successful completion would supplement the
arsenal of tools used in stroke management as well.
摘要
磁共振成像(MRI)是大多数诊断性神经成像的护理标准,但
一些明显的缺点。脑动脉瘤,仍然首先经常被诊断为猝死或
灾难性出血,最好通过计算机断层扫描或数字成像提供分辨率
减影血管造影(DSA)。MRI的速度通常不足以可视化动脉输入,
动静脉畸形(AVM)的静脉引流。缺血性中风是最常见的神经系统疾病
颅内动脉狭窄是缺血性卒中的主要危险因素。为了
提高诊断的信心,并提供早期发现的病理变化,
脑血管系统,应朝着空间和时间分辨率取得重大进展
目前即使使用最先进的MRA技术也无法获得。
我们一直在开发采集和重建方法,以规避MRI在速度方面的缺点
为神经血管提供多维生理和解剖信息
显像我们认识到,为了实现所需的空间和时间组合,
分辨率和信噪比我们需要利用互补高级图像的协同作用
采集和重建技术。我们实验室开发的图像估计方法联合收割机
具有可变采样密度的非笛卡尔径向轨迹的约束重建算法
允许高质量的扩展扫描和时间分辨成像。我们已经成功地
开发了第一代这种技术,称为HYPR(HighlY约束反投影)
系列成像技术,为连续采集的图像的采集提供实质性加速。
这一建议提出了下一代加速成像技术的全面评估
血管狭窄,动脉瘤和AVM,将通过开发新的
图像采集和重建方法。这些方法将利用独立和共生
优化径向轨迹、并行成像和约束重建的加速机制,
包括HYPR和高级压缩感知算法。这些算法还将提供
来自新型高加速采集方法的数据:1)无造影剂流入技术,
分散对比增强的团注,以提供极好的动脉隔离、高分辨率和覆盖范围;以及
2)高质量时间平均血管成像体积以约束时间分辨对比度的重建,
增强数据。这些方法将在AVM的治疗和跟踪中进行评价,
血管狭窄和脑动脉瘤的评估。成功完成将补充
也有很多用于中风管理的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles A. Mistretta其他文献
Charles A. Mistretta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles A. Mistretta', 18)}}的其他基金
4D DSA and 4D Fluoroscopy: Validation of Diagnostic and Therapeutic Capabilities
4D DSA 和 4D 透视:诊断和治疗能力的验证
- 批准号:
8608595 - 财政年份:2013
- 资助金额:
$ 34.03万 - 项目类别:
4D DSA and 4D Fluoroscopy: Validation of Diagnostic and Therapeutic Capabilities
4D DSA 和 4D 透视:诊断和治疗能力的验证
- 批准号:
8418589 - 财政年份:2013
- 资助金额:
$ 34.03万 - 项目类别:
Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction
使用压缩感知和约束重建加速神经 MRA
- 批准号:
7987640 - 财政年份:2010
- 资助金额:
$ 34.03万 - 项目类别:
Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction
使用压缩感知和约束重建加速神经 MRA
- 批准号:
8068658 - 财政年份:2010
- 资助金额:
$ 34.03万 - 项目类别:
Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction
使用压缩感知和约束重建加速神经 MRA
- 批准号:
8252164 - 财政年份:2010
- 资助金额:
$ 34.03万 - 项目类别:
HighlY constrained backPRojection (HYPR) for Ultrafast Undersampled MRI
用于超快欠采样 MRI 的高度约束反投影 (HYPR)
- 批准号:
7258172 - 财政年份:2007
- 资助金额:
$ 34.03万 - 项目类别:
HighlY constrained backPRojection (HYPR) for Ultrafast Undersampled MRI
用于超快欠采样 MRI 的高度约束反投影 (HYPR)
- 批准号:
7362406 - 财政年份:2007
- 资助金额:
$ 34.03万 - 项目类别:
Phase Contrast Imaging using Isotropic Projection
使用各向同性投影的相差成像
- 批准号:
7048626 - 财政年份:2003
- 资助金额:
$ 34.03万 - 项目类别:
Phase Contrast Imaging using Isotropic Projection
使用各向同性投影的相差成像
- 批准号:
6733552 - 财政年份:2003
- 资助金额:
$ 34.03万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.03万 - 项目类别:
Continuing Grant














{{item.name}}会员




