Nanofocusing optics for synchrotron radiation instrumentation
用于同步辐射仪器的纳米聚焦光学器件
基本信息
- 批准号:ST/F001665/1
- 负责人:
- 金额:$ 42.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal requests manpower and facilities to develop a novel type of X-ray lens that will have a major impact in the study of nano-scale materials. The unprecedented brilliance achieved by 3rd generation synchrotron sources has opened up new opportunities for the study of materials at the nanometre scale. It will have a huge impact on a wide area of research including environmental science, catalysis and biology. The key to the exploitation of the improved sources is the development of novel optics that focus the narrow beams without loss of their brilliance and coherence. Grazing angle mirrors are widely used, but because of the grazing angle (few milliradians) the photon beam is particularly sensitive to slope errors, and roughness. Developments beyond current state-of-the-art are limited and expensive. New devices have been proposed that rely on refraction and diffraction. These include compound refractive lenses (CRL's) and kinoform lenses. CRL's are obtained by pressing the material with very hard parabolic tools, and then assembling several lenses together to reach the desired focus at the chosen energy. Aluminium and beryllium CRL's are routinely used in other synchrotrons and the good lateral resolution obtained with Be CRL's makes them even suitable for imaging. Focused spots of few tens of nanometers have been demonstrated with new refractive micro fabricated silicon planar lens, which can be more accurate in shape than simple pressed Al or Be lenses. The Optics Group at Diamond and the collaborators in this project aim at improving and enlarging the UK know-how on design and fabrication of nanofocusing lenses and routinely provide microfocusing lenses at lower cost than mirrors. Silicon planar low absorption kinoform lenses have been fabricated and successfully tested by the group, using a modest grant from the Centre for Instrumentation. A microfocused spot was obtained with these lenses at a photon energy of 12 keV. The data show short focus tails and absence of background. There is much scope for improvement and we believe that if this project is successful, UK synchrotron users will have access to the best in-line focusing optics. With this proposal we request resources for improving acceptance of the microfocus lenses and to achieve nanofocusing. In addition to silicon single crystal, we wish to use other lens materials like CVD diamond, germanium and nickel. Different materials are infact needed to cover a large photon energy range. CVD diamond, moreover, has the best performance in terms of power load and low absorption. Practical exploitation of these lenses in beamlines will require special arrangements. A single planar refractive lens produces a line focus: in order to produce a point focus two wafers have to be held at the right positions and mutual orientation, therefore special holders and motorised stages have to be envisaged. Monitoring and alignment of instrumentation with nanometre precision will be developed and tested on synchrotron beamlines. Finally, we wish to reply to the board request that 'The full proposal should include how many users will benefit from this development and how the new equipment differs from similar equipment being developed elsewhere e.g. at the ESRF'. We highlight in the support case that the ESRF has developed focusing and collimating optics based on mirrors and multilayers. The refractive optics proposed here have been developed by other laboratories (Aachen University, Paul Scherrer Institute) and only tested at the ESRF. Nanofocusing lenses have been demonstrated but not brought to full exploitation. Beams of 50 nm are achieved under special conditions at very few beamlines. Lenses fabricated in these laboratories will not be available to UK users for a long period because they are not for purchase (apart from the Be and Al lenses which are not nanofocusing devices).We aim at providing these on a daily basis to the 50% of UK users.
该提案要求人力和设备开发一种新型的X射线透镜,这将对纳米尺度材料的研究产生重大影响。第三代同步辐射光源所取得的前所未有的辉煌成就为纳米尺度的材料研究开辟了新的机会。它将对包括环境科学、催化和生物学在内的广泛研究领域产生巨大影响。开发改进光源的关键是开发新的光学器件,使窄光束聚焦而不损失其亮度和相干性。掠射角反射镜被广泛使用,但由于掠射角(几毫弧度),光子束对斜率误差和粗糙度特别敏感。超越目前最先进水平的发展是有限的和昂贵的。已经提出了依靠折射和衍射的新装置。这些包括复合折射透镜(CRL)和开诺全息透镜。CRL是通过用非常硬的抛物面工具压制材料,然后将几个透镜组装在一起,以达到所需的焦点。铝和铍CRL通常用于其他同步加速器中,Be CRL获得的良好横向分辨率使其甚至适合于成像。利用新型折射微加工硅平面透镜,可以得到几十纳米的聚焦光斑,其形状比简单的压制铝或铍透镜更精确。Diamond的光学小组和该项目的合作者旨在改善和扩大英国在纳米聚焦透镜设计和制造方面的专业知识,并以比镜子更低的成本定期提供微聚焦透镜。硅平面低吸收相息图透镜已经制造出来,并成功地测试了该集团,使用了适度的赠款,从中心的仪器。用这些透镜在12 keV的光子能量下获得微聚焦点。数据显示短的焦点尾部和背景的缺乏。有很大的改进空间,我们相信,如果这个项目是成功的,英国同步加速器用户将有机会获得最好的在线聚焦光学。通过这项提案,我们要求提供资源,以提高微聚焦透镜的接受度,并实现纳米聚焦。除了硅单晶之外,我们希望使用其他透镜材料,如CVD金刚石、锗和镍。实际上需要不同的材料来覆盖大的光子能量范围。此外,CVD金刚石在功率负载和低吸收方面具有最佳性能。在光束线中实际利用这些透镜将需要特殊的安排。单个平面折射透镜产生线焦点:为了产生点焦点,必须将两个晶片保持在正确的位置和相互定向,因此必须设想特殊的支架和电动载物台。将在同步加速器光束线上开发和测试具有纳米精度的仪器监测和校准。最后,我们希望回应董事会的要求,即“完整的提案应包括有多少用户将从这一发展中受益,以及新设备与其他地方(如ESRF)正在开发的类似设备有何不同”。我们在支持案例中强调ESRF已经开发出基于反射镜和多层膜的聚焦和准直光学器件。这里提出的折射光学已经由其他实验室(亚琛大学,保罗谢勒研究所)开发,并只在ESRF测试。纳米聚焦透镜已经被证明,但尚未得到充分利用。50 nm的光束是在特殊条件下在非常少的光束线。在这些实验室制造的镜片将不会提供给英国用户很长一段时间,因为他们不是购买(除了Be和Al镜片,这不是纳米聚焦设备)。我们的目标是每天提供这些英国用户的50%。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of germanium linear kinoform lenses at Diamond Light Source.
- DOI:10.1107/s0909049509003215
- 发表时间:2009-05
- 期刊:
- 影响因子:2.5
- 作者:L. Alianelli;Kawal Sawhney;Manoj Tiwari;I. Dolbnya;Robert Stevens;D.W.K. Jenkins;I. Loader;M. Wilson;A. Malik
- 通讯作者:L. Alianelli;Kawal Sawhney;Manoj Tiwari;I. Dolbnya;Robert Stevens;D.W.K. Jenkins;I. Loader;M. Wilson;A. Malik
Aberration-free short focal length x-ray lenses.
- DOI:10.1364/ol.40.005586
- 发表时间:2015-12
- 期刊:
- 影响因子:3.6
- 作者:L. Alianelli;M. D. del Río;O. Fox;K. Korwin-Mikke
- 通讯作者:L. Alianelli;M. D. del Río;O. Fox;K. Korwin-Mikke
A planar refractive x-ray lens made of nanocrystalline diamond
- DOI:10.1063/1.3517060
- 发表时间:2010-12-15
- 期刊:
- 影响因子:3.2
- 作者:Alianelli, L.;Sawhney, K. J. S.;Wilson, M. C.
- 通讯作者:Wilson, M. C.
Nanofocusing optics for synchrotron radiation made from polycrystalline diamond.
- DOI:10.1364/oe.22.007657
- 发表时间:2014-04
- 期刊:
- 影响因子:3.8
- 作者:Oliver Fox;L. Alianelli;A. Malik;Ian Pape;Paul W May;Kawal Sawhney
- 通讯作者:Oliver Fox;L. Alianelli;A. Malik;Ian Pape;Paul W May;Kawal Sawhney
Deep reactive ion etching of silicon moulds for the fabrication of diamond x-ray focusing lenses
- DOI:10.1088/0960-1317/23/12/125018
- 发表时间:2013-11
- 期刊:
- 影响因子:2.3
- 作者:A. Malik;O. Fox;L. Alianelli;A. Korsunsky;R. Stevens;I. Loader;M. Wilson;I. Pape;K. Sawhney;P. May
- 通讯作者:A. Malik;O. Fox;L. Alianelli;A. Korsunsky;R. Stevens;I. Loader;M. Wilson;I. Pape;K. Sawhney;P. May
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucia Alianelli其他文献
Lucia Alianelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
低纬度边缘海颗粒有机碳的卫星遥感算法研究
- 批准号:41076114
- 批准年份:2010
- 资助金额:54.0 万元
- 项目类别:面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
共形光学元件内凹面的磁流变抛光技术研究
- 批准号:50675116
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:面上项目
半导体中激子的量子非线性光学的研究
- 批准号:10474025
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Enabling membrane protein structural analysis: Tools for capillary diffusion crystallization and remote in situ diffraction experiments
实现膜蛋白结构分析:毛细管扩散结晶和远程原位衍射实验工具
- 批准号:
10080283 - 财政年份:2020
- 资助金额:
$ 42.56万 - 项目类别:
A Synchrotron Radiation Structural Biology Resource
同步辐射结构生物学资源
- 批准号:
10350698 - 财政年份:2020
- 资助金额:
$ 42.56万 - 项目类别:
A Synchrotron Radiation Structural Biology Resource
同步辐射结构生物学资源
- 批准号:
10578809 - 财政年份:2020
- 资助金额:
$ 42.56万 - 项目类别:
Enabling NIR-PIT therapy to treat deep-tissue cancer
启用 NIR-PIT 疗法来治疗深部组织癌症
- 批准号:
9599764 - 财政年份:2018
- 资助金额:
$ 42.56万 - 项目类别:
Enabling NIR-PIT therapy to treat deep-tissue cancer
启用 NIR-PIT 疗法来治疗深部组织癌症
- 批准号:
9761509 - 财政年份:2018
- 资助金额:
$ 42.56万 - 项目类别:
X-Ray Optics for Synchrotron Biomedical Imaging Research
用于同步加速器生物医学成像研究的 X 射线光学器件
- 批准号:
327354-2012 - 财政年份:2016
- 资助金额:
$ 42.56万 - 项目类别:
Discovery Grants Program - Individual
X-Ray Optics for Synchrotron Biomedical Imaging Research
用于同步加速器生物医学成像研究的 X 射线光学器件
- 批准号:
327354-2012 - 财政年份:2015
- 资助金额:
$ 42.56万 - 项目类别:
Discovery Grants Program - Individual
Sophistication of synchrotron radiation imaging by variable-magnification x-ray Bragg optics
通过可变放大倍率 X 射线布拉格光学器件实现同步加速器辐射成像的复杂性
- 批准号:
15K04745 - 财政年份:2015
- 资助金额:
$ 42.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
生物同步加速器 MicroCT 成像资源 (SMIRB) 的基础
- 批准号:
10669824 - 财政年份:2015
- 资助金额:
$ 42.56万 - 项目类别: