Protein Structure/Function by NMR, Crystallography and Computational Chemistry
通过 NMR、晶体学和计算化学研究蛋白质结构/功能
基本信息
- 批准号:8013321
- 负责人:
- 金额:$ 35.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-01-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAnti-Bacterial AgentsAntibioticsAntifungal AgentsAreaAzolesBacteriaBindingBone ResorptionCarotenoidsCell WallCellsCholesterolClinicalClinical DataCommitCommunicable DiseasesCommunitiesCommunity-Acquired InfectionsComputing MethodologiesConfidential InformationCrystallographyDefense MechanismsDevelopmentDioxygenasesDiphosphatesDrug Metabolic DetoxicationDrug resistanceEnzyme Inhibitor DrugsEnzyme InhibitorsEnzymesFundingGene Expression ProfileGeranyltranstransferaseGrantHealthHospitalsHumanImmuneImmune systemImmunomodulatorsInfectionLanguageLeadMediatingMetalloproteinsMethicillinMiconazoleMolecular ConformationMorphologyMusNBL1 geneNamesOrangesOsteoporosisPharmaceutical PreparationsPhysical condensationPigmentsPrincipal InvestigatorProcessPublic HealthQuantitative Structure-Activity RelationshipReactive Oxygen SpeciesResearchResistanceRoentgen RaysSqualene SynthetaseStaphylococcus aureusStructureStructure-Activity RelationshipSystemT-Cell ActivationT-Cell ReceptorT-LymphocyteTNF geneTechniquesTestingVirulenceVirulence FactorsVirulentVitamin K 2WorkZoledronatebasebisphosphonatecancer immunotherapycell killingcomputational chemistrycomputer studiescytokinedecaprenyl pyrophosphate synthetasedehydrosqualenedesignfarnesyltranstransferaseguanidiniumhypercholesterolemiaimmunoregulationinhibitor/antagonistinterestisopentenyl pyrophosphateisoprenoidkillingsmacrophageneoplastic cellneutrophilnovelnovel strategiespre-clinicalprogramsprotein structure functionresistant strainresponsesmall moleculesolid state nuclear magnetic resonancestaphyloxanthintherapeutic targetundecaprenyl pyrophosphate synthetase
项目摘要
DESCRIPTION (provided by applicant): The broad, overall objectives of this work are to use NMR, X-ray and computational methods to help develop novel anti-bacterial agents, which enhance innate immune system based killing, in addition to killing bacteria directly. The First Aim is to develop molecules that inhibit formation of the orange carotenoid virulence factor, staphyloxanthin, in Staphylococcus aureus. In recent work, we discovered that human squalene synthase inhibitors can also block staphyloxanthin biosynthesis in S. aureus, at 200 nM levels. The resulting S. aureus (L. aureus=golden) are white, non-infective in mice and are killed by neutrophils, since they have decreased defenses to reactive oxygen species. In Aim 1, we will develop more effective compounds, using NMR, X-ray and QSAR results to guide the design process. If successful, this work would be of importance given the increasing number S. aureus strains that are becoming resistant to conventional antibiotics. The Second Aim is to develop the azole class of molecules currently used as anti-fungals, as agents against S. aureus, blocking bacterial flavohemoglobin dioxygenase (which detoxifies NO from innate immune cells), as well as affecting isoprenoid biosynthesis. We will first investigate how azoles bind to flavohemoglobin and deduce structure-activity relationships that will guide the design of other, more potent inhibitors. Second, we will investigate how azoles exert their direct anti-bacterial activity. We propose to test the hypothesis that this activity is a result of the inhibition of isoprenoid biosynthesis, by correlating isoprenoid levels with anti-bacterial activity, and by using microarray techniques to investigate the bacterial transcriptome. If successful, this work would lead to novel azoles that inhibit bacterial defenses against NO-based killing, as well as new compounds that inhibit bacterial cell wall biosynthesis. The Third Aim is to develop bisphosphonates that activate ?? T cells of the innate immune system to kill bacteria, in addition to developing novel bisphosphonates that kill bacteria directly. In each Aim, we will use the strategy of developing alternate uses for existing types of drugs already used or tested in humans: cholesterol lowering drugs that block virulence in S. aureus (Aim 1), anti-fungal azoles with anti- bacterial activity (Aim 2) and bone resorption drugs that have immunomodulation or direct anti- bacterial activity (Aim 3).In addition, in two or three sentences, describe in plain, lay language the relevance of this research to public health. If the application is funded, this description, as is, will become public information. Therefore, do not include proprietary/confidential information. PUBLIC HEALTH RELEVANCE The research proposed is designed to lead to new approaches to treating infectious diseases. Particular emphasis will be given to developing alternate, novel uses for existing types of drugs: cholesterol lowering molecules that also block Staph infections; anti-fungals with anti-bacterial activity, and bone resorption drugs that stimulate the immune system as well as kill bacteria directly.
描述(由申请人提供):这项工作的总体目标是利用核磁共振、X射线和计算方法来帮助开发新的抗菌剂,除了直接杀灭细菌外,还可以增强基于天然免疫系统的杀灭作用。第一个目标是开发抑制金黄色葡萄球菌中橙色类胡萝卜素毒力因子葡萄黄素形成的分子。在最近的工作中,我们发现人角鲨烯合成酶抑制剂也可以在200 NM水平上阻断金黄色葡萄球菌中葡萄糖素的生物合成。由此产生的金黄色葡萄球菌(金黄色葡萄球菌=金黄色)是白色的,在小鼠中不具感染性,可被中性粒细胞杀死,因为它们降低了对活性氧物种的防御能力。在目标1中,我们将开发更有效的化合物,使用核磁共振、X射线和QSAR结果来指导设计过程。如果成功,这项工作将具有重要意义,因为越来越多的金黄色葡萄球菌菌株正在对传统抗生素产生抗药性。第二个目标是开发目前用作抗真菌药物的唑类分子,作为对抗金黄色葡萄球菌的药物,阻止细菌黄色素双加氧酶(从天然免疫细胞中解毒一氧化氮),以及影响异戊二烯的生物合成。我们将首先研究氮唑是如何与黄色素结合的,并推导出结构-活性关系,这将指导其他更有效的抑制剂的设计。其次,我们将研究唑类化合物是如何发挥其直接抗菌活性的。我们建议通过将异戊二烯水平与抗菌活性关联起来,并使用微阵列技术来研究细菌转录组,来检验这种活性是类异戊二烯生物合成受到抑制的结果的假设。如果这项工作成功,这项工作将导致新的唑,以抑制细菌对基于NO的杀戮的防御,以及新的化合物,抑制细菌细胞壁的生物合成。第三个目标是开发能够激活??的双膦酸盐。除了开发可以直接杀死细菌的新型双膦酸盐外,还可以利用先天免疫系统中的T细胞来杀灭细菌。在每个目标中,我们将使用为已经在人体上使用或测试的现有类型的药物开发替代用途的策略:阻断金黄色葡萄球菌毒力的降胆固醇药物(目标1)、具有抗菌活性的抗真菌唑(目标2)和具有免疫调节或直接抗菌活性的骨吸收药物(目标3)。此外,用两三句话简单易懂地描述这项研究与公共健康的相关性。如果申请得到资助,这一描述将成为公开信息。因此,不包括专有/机密信息。这项研究提出的公共卫生相关性旨在引导治疗传染病的新方法。将特别强调为现有类型的药物开发替代的新用途:还可以阻止葡萄球菌感染的降胆固醇分子;具有抗细菌活性的抗真菌药物;以及刺激免疫系统和直接杀死细菌的骨吸收药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Oldfield其他文献
Eric Oldfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Oldfield', 18)}}的其他基金
Next generation bisphosphonates for chemo- and immuno-therapy
用于化疗和免疫治疗的下一代双膦酸盐
- 批准号:
8444316 - 财政年份:2011
- 资助金额:
$ 35.73万 - 项目类别:
Next generation bisphosphonates for chemo- and immuno-therapy
用于化疗和免疫治疗的下一代双膦酸盐
- 批准号:
8627146 - 财政年份:2011
- 资助金额:
$ 35.73万 - 项目类别:
Next generation bisphosphonates for chemo- and immuno-therapy
用于化疗和免疫治疗的下一代双膦酸盐
- 批准号:
8825340 - 财政年份:2011
- 资助金额:
$ 35.73万 - 项目类别:
Next generation bisphosphonates for chemo- and immuno-therapy
用于化疗和免疫治疗的下一代双膦酸盐
- 批准号:
8085202 - 财政年份:2011
- 资助金额:
$ 35.73万 - 项目类别:
Prenyldiphosphate Synthase Inhibitors: Novel Anti-Infective Agents
异戊二烯二磷酸合酶抑制剂:新型抗感染剂
- 批准号:
7686803 - 财政年份:2002
- 资助金额:
$ 35.73万 - 项目类别:
Prenyl Synthase Inhibitors: Novel Anti-Infective Agents
异戊二烯合酶抑制剂:新型抗感染剂
- 批准号:
7984564 - 财政年份:2002
- 资助金额:
$ 35.73万 - 项目类别:
Prenyl Synthase Inhibitors: Novel Anti-Infective Agents
异戊二烯合酶抑制剂:新型抗感染剂
- 批准号:
8532682 - 财政年份:2002
- 资助金额:
$ 35.73万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 35.73万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 35.73万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 35.73万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 35.73万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 35.73万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 35.73万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 35.73万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 35.73万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 35.73万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 35.73万 - 项目类别:
Discovery Early Career Researcher Award