An Efficient Lightweight Environment for Biomedical Computation
生物医学计算的高效轻量级环境
基本信息
- 批准号:8035956
- 负责人:
- 金额:$ 42.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalBiomedical ComputingBiomedical ResearchCommunitiesComplexComputer AnalysisComputer softwareDataData QualityData SetData SourcesDependencyEngineeringEnvironmentFaceGenerationsGeneticGenetic PolymorphismGenomeGenomicsGenotypeGoalsGrowthHealthHumanHuman GenomeImageryIndividualInternetInvestmentsJavaLanguageLettersMedical ResearchMetagenomicsMolecular ProfilingOne-Step dentin bonding systemOutputPaperParentsPhylogenetic AnalysisPolymorphism AnalysisProblem SolvingProtocols documentationProviderPublishingReadingResearchResearch InfrastructureResearch PersonnelResourcesRetrievalRiskScientistSecureServicesSourceSystemSystems AnalysisTimeTrainingTranslational ResearchTranslationsTreesUnited States National Institutes of HealthVariantWorkWritingbench to bedsidecase controlclinically relevantcomparative genomicscomputerized toolsdata modelingdatabase of Genotypes and Phenotypesdesignempoweredfeedingflexibilitygenome-widehuman subjectimprovedinsightinteroperabilitymeetingsnext generationnovelopen sourceprogramsskillssuccesstool
项目摘要
DESCRIPTION (provided by applicant): The translation from large volumes of experimental data to clinically relevant insights relies on sophisticated computational analysis tools that can handle the enormous high-throughput sequence, polymorphism, and functional datasets. Developing appropriate tools is necessary but not sufficient, because the independent analysis tools in themselves do not solve an increasingly problematic barrier blocking the bench-to-bedside path outlined in the NIH Roadmap for medical research: making powerful new computational tools readily accessible and useful for experimental biologists. Developing usable and consistent user interfaces requires significant effort, and few tool developers can afford to devote time and resources to this goal. Currently many powerful, independent analysis tools exist, but lack integrated, easy-to-use interfaces that would allow experimental biologists to take advantage of them. Thus, developing tools to analyze overwhelming amounts of data is no longer the main challenge in biomedical research. Instead the problem lies in making existing tools usable for bench biologists so that they can take full advantage of existing data. We have developed a system - GALAXY - that makes substantial progress toward solving this problem. For experimental biologists, it provides an intuitive and consistent interface for performing sophisticated analyses with minimal effort, regardless of the scale of data involved. For computational tool developers, it makes it easy to integrate existing tools with a modern user interface by writing a simple, concise interface description. For data providers, it features a simple, elegant data access protocol. Thus, GALAXY bridges a critically important gap between data resources, computational tools and users, by making it easy to modernize the interfaces of any existing tool, freeing developers of new tools from the need to develop interfaces from scratch, and facilitating tool interoperability and complex analyses by seamlessly integrating analysis outputs, applications and external data. Here we propose to develop novel features specifically designed for translational research. First, we will engineer a tool integration framework streamlining delivery of analysis software to experimentalists. Second, we will develop a statistical genetics toolkit allowing clinicians to manipulate and interpret human variation data on any scale. Third, we will implement the first integrated system for analysis of short-read sequencing data. Fourth, we will design utilities for manipulation of the most valuable comparative genomics resource - multi- genome alignments. Finally, we will build a workflow system to enable reproducible and collaborative analysis of genomic data. PUBLIC HEALTH RELEVANCE: Genomic data discovery is no longer a limiting factor for much of the medical research. The NIH Roadmap recognizes that many challenges in biomedical research will only be overcome through appropriate investment to improve integrative access to existing data and tools, so researchers can more effectively and rapidly trans- late their findings into practice. The proposed project addresses this challenge by allowing biomedical re- searchers to take advantage of the enormous sequence, polymorphism, and functional datasets easily and effectively.
描述(由申请人提供):从大量实验数据到临床相关见解的转化依赖于复杂的计算分析工具,这些工具可以处理巨大的高通量序列、多态性和功能数据集。开发适当的工具是必要的,但还不够,因为独立的分析工具本身并不能解决NIH医学研究路线图中所概述的从实验室到床边的越来越多的问题障碍:使强大的新计算工具易于获得,并对实验生物学家有用。开发可用的和一致的用户界面需要大量的工作,很少有工具开发人员能够为这个目标投入时间和资源。目前存在许多强大的独立分析工具,但缺乏集成的,易于使用的界面,使实验生物学家可以利用它们。因此,开发分析大量数据的工具不再是生物医学研究的主要挑战。相反,问题在于使现有的工具可用于板凳生物学家,使他们能够充分利用现有的数据。我们已经开发了一个系统- GALAXY -在解决这个问题方面取得了实质性进展。对于实验生物学家来说,它提供了一个直观和一致的界面,无论涉及的数据规模如何,都可以以最小的努力进行复杂的分析。对于计算工具开发人员来说,通过编写简单、简洁的界面描述,可以轻松地将现有工具与现代用户界面集成。对于数据提供者,它提供了一个简单、优雅的数据访问协议。因此,GALAXY弥合了数据资源,计算工具和用户之间的重要差距,使任何现有工具的界面现代化变得容易,使新工具的开发人员无需从头开始开发界面,并通过无缝集成分析输出,应用程序和外部数据来促进工具互操作性和复杂分析。在这里,我们建议开发专门为翻译研究设计的新功能。首先,我们将设计一个工具集成框架,简化向实验人员交付分析软件的过程。其次,我们将开发一个统计遗传学工具包,使临床医生能够在任何尺度上操纵和解释人类变异数据。第三,我们将实施第一个用于短读测序数据分析的集成系统。第四,我们将设计最有价值的比较基因组学资源-多基因组比对的操作工具.最后,我们将建立一个工作流程系统,以实现基因组数据的可重复和协作分析。公共卫生相关性:基因组数据发现不再是大部分医学研究的限制因素。NIH路线图认识到,生物医学研究中的许多挑战只能通过适当的投资来克服,以改善对现有数据和工具的综合访问,使研究人员能够更有效,更快速地将他们的发现转化为实践。拟议的项目通过允许生物医学研究人员轻松有效地利用庞大的序列、多态性和功能数据集来解决这一挑战。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Making whole genome multiple alignments usable for biologists.
- DOI:10.1093/bioinformatics/btr398
- 发表时间:2011-09-01
- 期刊:
- 影响因子:0
- 作者:Blankenberg D;Taylor J;Nekrutenko A;Galaxy Team
- 通讯作者:Galaxy Team
The missing graphical user interface for genomics.
- DOI:10.1186/gb-2010-11-8-128
- 发表时间:2010
- 期刊:
- 影响因子:12.3
- 作者:Schatz MC
- 通讯作者:Schatz MC
Manipulation of FASTQ data with Galaxy.
- DOI:10.1093/bioinformatics/btq281
- 发表时间:2010-07-15
- 期刊:
- 影响因子:0
- 作者:Blankenberg D;Gordon A;Von Kuster G;Coraor N;Taylor J;Nekrutenko A;Galaxy Team
- 通讯作者:Galaxy Team
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANTON NEKRUTENKO其他文献
ANTON NEKRUTENKO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANTON NEKRUTENKO', 18)}}的其他基金
Turning big data analysis infrastructure for HIV research
将大数据分析基础设施用于艾滋病毒研究
- 批准号:
10214719 - 财政年份:2020
- 资助金额:
$ 42.57万 - 项目类别:
Tuning big data analysis infrastructure for HIV research
调整艾滋病毒研究的大数据分析基础设施
- 批准号:
9511742 - 财政年份:2017
- 资助金额:
$ 42.57万 - 项目类别:
Tuning big data analysis infrastructure for HIV research
调整艾滋病毒研究的大数据分析基础设施
- 批准号:
10170221 - 财政年份:2017
- 资助金额:
$ 42.57万 - 项目类别:
Democratization of Data Analysis in Life Sciences Through Galaxy
通过 Galaxy 实现生命科学数据分析的民主化
- 批准号:
8432034 - 财政年份:2012
- 资助金额:
$ 42.57万 - 项目类别:
Democratization of Data Analysis in Life Sciences Through Galaxy
通过 Galaxy 实现生命科学数据分析的民主化
- 批准号:
10576907 - 财政年份:2012
- 资助金额:
$ 42.57万 - 项目类别:
Democratization of Data Analysis in Life Sciences Through Galaxy
通过 Galaxy 实现生命科学数据分析的民主化
- 批准号:
10356796 - 财政年份:2012
- 资助金额:
$ 42.57万 - 项目类别:
Democratization of Data Analysis in Life Sciences Through Galaxy
通过 Galaxy 实现生命科学数据分析的民主化
- 批准号:
10090025 - 财政年份:2012
- 资助金额:
$ 42.57万 - 项目类别:
Democratization of Data Analysis in Life Sciences Through Galaxy
通过 Galaxy 实现生命科学数据分析的民主化
- 批准号:
8243028 - 财政年份:2012
- 资助金额:
$ 42.57万 - 项目类别:
Democratization of Data Analysis in Life Sciences Through Galaxy
通过 Galaxy 实现生命科学数据分析的民主化
- 批准号:
8606866 - 财政年份:2012
- 资助金额:
$ 42.57万 - 项目类别:
An Efficient Lightweight Environment for Biomedical Computation
生物医学计算的高效轻量级环境
- 批准号:
7566686 - 财政年份:2009
- 资助金额:
$ 42.57万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 42.57万 - 项目类别:
Standard Grant