System Biology Approach for Signaling Transduction Study of Complex Phenotypes
用于复杂表型信号转导研究的系统生物学方法
基本信息
- 批准号:8144246
- 负责人:
- 金额:$ 31.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2013-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressBiological AssayBiological MarkersCandidate Disease GeneCategoriesChromosome abnormalityCommunitiesComplexComputer softwareDNADataDatabasesDetectionDiabetes MellitusDiagnosisDiffusionDiseaseDysmyelopoietic SyndromesDysplasiaExonsFluorescenceFrequenciesGene ExpressionGenesGenomeGenotypeGoalsHematopoietic stem cellsHospitalsIncidenceInformaticsInternetLeadMalignant NeoplasmsMapsMessenger RNAMethodist ChurchMethodologyMicroRNAsModelingMolecularMolecular ProfilingMutationPathogenesisPathway AnalysisPathway interactionsPatientsPatternPerformancePhenotypePopulationPredispositionQuantitative Trait LociRefractoryRefractory Anemia with Ringed SideroblastsRefractory anaemia with excess blastsRefractory anemiasResearchSamplingShapesSignal PathwaySignal TransductionSingle Nucleotide PolymorphismStagingSystemSystems BiologyTechniquesTestingTimeTissuesValidationbasecohortcytopeniadesigngenome wide association studygenome-widenovelperformance testspreventprotein protein interactionprototypesoftware systemssuccesstool
项目摘要
DESCRIPTION (provided by applicant):
The primary goal of the proposed study is to develop a software package, Signal Transduction Network Analyzer (STkAnalyzer), to identify signal pathways and pathway signatures that are related to diseases with complex phenotype. We will use the four myelodysplastic syndromes (MDS) phenotypes as the prototype of disease to test the performance of this package by integrating high-throughput genome-wide profiling using single-nucleotide polymorphism (SNP) array, gene expression arrays, microRNA array, and publically available Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) databases. The frequency and incidence of MDSs is increasing in the U.S. population but the diagnosis of MDSs patients has not shown any significant improvement over the last decade. One major cause of the latter phenomenon is the lack of methodologies to accurately finding the pathways and biomarkers for MDSs at an early stage. Dr. Chang's group in The Methodist Hospital is studying a cohort of more than 300 well-characterized MDS patients. The MDS is characterized by very complex phenotypes with main categories include refractory anemia (RA), RA with ringed sideroblasts (RARS), refractory cytopenia with multi-lineage dysplasia (RCMD), RA with excess blasts (RAEB). Although MDS was used as the prototype of disease for this proposal, the package developed will be applicable to multiple diseases with complex phenotypes such as cancers, diabetes and so on. The impact of the package is tremendous in system biology.
Detecting chromosomal abnormality can identify the candidate genetic alterations which may cause the transformation of the hematopoietic stem cells. But it cannot answer which of these candidate genes are the true causal genes of MDS phenotypes and how these genes cause MDS phenotypes. Similarly, comparison of gene expression profiles between disease samples and normal samples could identify which genes are active in disease tissue and which genes are inactive. However, it cannot discriminate which genes are the causes and which genes are the results. These questions are extremely important and the answers will shape our basic view of the molecular mechanism of MDS phenotypes and influences how to design and develop new strategies for diagnosis, treat and prevent MDS. The recent availability of large protein-protein interaction, protein-DNA interaction data, and the expression quantitative trait loci (eQTL) mapping techniques provides a means to address these issues. Hence we propose to identify signal pathways that are perturbed by susceptibility loci and that in turn lead to the four MDS phenotypes.
The major technological contributions in this package (STkAnalyzer) are in four: first, a novel Conditional Random Pattern approach is developed for amplified SNParray copy number estimation and LOH detection; second, eQTL mapping is proposed to associate the genotyping data and mRNA; third a significance analysis of microRNA-mRNA targeting (SAMiMT) is proposed to integrate mRNA and microRNA arrays, and finally a Diffusion Mapping or Semi-Group approach is proposed for inferring signal transduction network and biomarker motif (biomarker pattern or pathway signature) to unravel the underlying mechanism how the eQTLs lead to the MDS pathogenesis.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaobo Zhou其他文献
Xiaobo Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaobo Zhou', 18)}}的其他基金
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10685960 - 财政年份:2019
- 资助金额:
$ 31.42万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
9803214 - 财政年份:2019
- 资助金额:
$ 31.42万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10226049 - 财政年份:2019
- 资助金额:
$ 31.42万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10458544 - 财政年份:2019
- 资助金额:
$ 31.42万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10117064 - 财政年份:2019
- 资助金额:
$ 31.42万 - 项目类别:
A Novel Informatics System For Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
- 批准号:
10286746 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
A Novel Informatics System for Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
- 批准号:
10199743 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
A Novel Informatics System for Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
- 批准号:
9360750 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
Integrative approach to studying LncRNA functions
研究 LncRNA 功能的综合方法
- 批准号:
9751927 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
Integrative approach to studying LncRNA functions
研究 LncRNA 功能的综合方法
- 批准号:
10119971 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 31.42万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 31.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 31.42万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 31.42万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




