Accurate Modeling in Structural Genomics

结构基因组学的精确建模

基本信息

  • 批准号:
    8118955
  • 负责人:
  • 金额:
    $ 33.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Modeling three-dimensional structure of protein molecules is of clear biomedical importance, driven by two powerful forces. First is the realization that proteins carry out almost all essential functional and structural tasks in living systems by virtue of their folded shape; almost all drugs depend on a small molecule inhibiting a malfunctioning protein through shape complementarity in three-dimensions. Second is the rapid determination of genomic protein sequence data, doubling in the past 28 months, and complemented by equally rapid determination of novel protein structural data; structural coverage of sequences (percentage of sequences with some structural information) is over 50% and is increasing thanks to structural genomics initiatives. This proposal continues previous aims by developing and improving methods for accurate homology modeling (have known structure of a related sequence). Current aims extend to the general problem of ab initio structure prediction (no structure of any related sequence). Such extension is possible due to recent progress and a realization that both homology modeling and ab initio structure prediction share a common philosophy rooted in the decoy / discriminate paradigm we pioneered in 1995. Specifically, both protein modeling and structure prediction have four inter-related stages: (a) Formulation of energy functions, (b) Application of move sets, (c) Generation of decoy structures and (d) Assessment of predicted structures. These four steps are iterated to improve both decoys and energy functions so as to obtain ever better predicted structures. Analysis of experimentally determined sequences and structures goes hand in hand with this planned modeling to give as an over-view of the extent of the problem and the progress made in the field. Drawn to such an analysis in the previous funding period, we expect to continue this activity with particular focus on the 'dark matter', those sequences for which we have least information. We are well-aware that these are ambitious aims but are encouraged by recent progress. Our methodology uses knowledge-based or statistical energy functions, but our philosophy is very rooted in the physical nature of the systems. As such, our work will have far-reaching applications to theoretical studies of molecular function including ligand binding modeling, protein-protein interaction modeling and more general simulation of protein function. Our five specific aims are: (1) Better knowledge-based energy functions, (2) General and novel move sets, (3) Decoy generation by uniform sampling and powerful search and (4) Assessment of structures to reveal deficiencies and (5) Analysis of uncharacterized sequence in terms of clustering sequence domains into new families. Achieving these aims will advance our fundamental understanding of the molecular structure: predicted molecular structure can guide experiments and lead to further understanding of molecular mechanisms. PUBLIC HEALTH RELEVANCE: Modeling three-dimensional structures of protein molecules is of clear biomedical importance: (1) proteins carry out almost all essential functional and structural tasks in living systems by virtue of their folded shape (almost all drugs depend on a small molecule binding to and inhibiting a malfunctioning protein through shape complementarity in three-dimensions); and (2) the rapid growth of genomic protein sequence data, doubling in the past 28 months. This proposal continues previous aims by developing improved methods for accurate homology modeling (have known structure of a related sequence) and also extends the aims to the general problem of ab initio structure prediction (no structure of any related sequence).
描述(由申请人提供):蛋白质分子的三维结构建模具有明显的生物医学重要性,由两种强大的力量驱动。首先是认识到蛋白质凭借其折叠形状在生命系统中执行几乎所有基本的功能和结构任务;几乎所有药物都依赖于通过三维形状互补性抑制故障蛋白质的小分子。其次是快速确定基因组蛋白质序列数据,在过去28个月内翻了一番,并通过同样快速确定新的蛋白质结构数据来补充;序列的结构覆盖率(具有一些结构信息的序列的百分比)超过50%,并且由于结构基因组学倡议而不断增加。该提案通过开发和改进用于精确同源性建模(具有相关序列的已知结构)的方法来继续先前的目标。目前的目标扩展到从头计算结构预测的一般问题(没有任何相关序列的结构)。这样的扩展是可能的,由于最近的进展和实现,同源建模和从头计算结构预测共享一个共同的哲学植根于诱饵/歧视范式,我们在1995年开创。具体而言,蛋白质建模和结构预测都有四个相互关联的阶段:(a)能量函数的公式化,(B)移动集的应用,(c)诱饵结构的生成和(d)预测结构的评估。迭代这四个步骤以改进诱饵和能量函数,从而获得更好的预测结构。实验确定的序列和结构的分析与此计划的建模齐头并进,以概述问题的程度和在该领域取得的进展。在前一个资助期进行了这样的分析,我们希望继续这项活动,特别关注“暗物质”,这些序列,我们有最少的信息。我们清楚地意识到这些目标是雄心勃勃的,但最近的进展使我们感到鼓舞。我们的方法使用基于知识的或统计的能量函数,但我们的哲学是非常植根于系统的物理性质。因此,我们的工作将有深远的应用,包括配体结合建模,蛋白质-蛋白质相互作用建模和更一般的模拟蛋白质功能的分子功能的理论研究。我们的五个具体目标是:(1)更好的基于知识的能量函数,(2)通用和新颖的移动集合,(3)通过均匀采样和强大的搜索产生诱饵,(4)评估结构以揭示缺陷,以及(5)根据将序列域聚类到新的家族中来分析未表征的序列。实现这些目标将推进我们对分子结构的基本理解:预测的分子结构可以指导实验,并导致对分子机制的进一步理解。 公共卫生相关性:蛋白质分子的三维结构建模具有重要的生物医学意义:(1)蛋白质在生命系统中几乎所有的基本功能和结构任务都是依靠其折叠的形状完成的(几乎所有的药物都依赖于小分子通过三维形状互补性结合并抑制故障蛋白);以及(2)基因组蛋白质序列数据的快速增长,在过去28个月内翻了一番。该提案通过开发用于精确同源性建模(具有相关序列的已知结构)的改进方法来延续先前的目标,并且还将目标扩展到从头计算结构预测(没有任何相关序列的结构)的一般问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL LEVITT其他文献

MICHAEL LEVITT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL LEVITT', 18)}}的其他基金

Three-Dimensional Structure of Eukaryote Chromosomes
真核生物染色体的三维结构
  • 批准号:
    10227079
  • 财政年份:
    2018
  • 资助金额:
    $ 33.17万
  • 项目类别:
Three-Dimensional Structure of Eukaryote Chromosomes
真核生物染色体的三维结构
  • 批准号:
    10018877
  • 财政年份:
    2018
  • 资助金额:
    $ 33.17万
  • 项目类别:
Emergent Properties of Complex Systems: From Atoms to Macromolecules; from Humans to Societies
复杂系统的涌现性质:从原子到大分子;
  • 批准号:
    10622276
  • 财政年份:
    2017
  • 资助金额:
    $ 33.17万
  • 项目类别:
Cost Effective, Synergistic Macromolecular Structure Determination, Analysis & Simulation
成本有效、协同的大分子结构测定、分析
  • 批准号:
    10016355
  • 财政年份:
    2017
  • 资助金额:
    $ 33.17万
  • 项目类别:
COMPUTATIONAL SUPPORT FOR CRITICAL ASSESMENT OF STRUCTURE PREDICTION (CASP) OF
结构预测 (CASP) 关键评估的计算支持
  • 批准号:
    7181631
  • 财政年份:
    2004
  • 资助金额:
    $ 33.17万
  • 项目类别:
Accurate Modeling in Structural Genomics
结构基因组学的精确建模
  • 批准号:
    8887126
  • 财政年份:
    2001
  • 资助金额:
    $ 33.17万
  • 项目类别:
Accurate Modeling in Structural Genomics
结构基因组学的精确建模
  • 批准号:
    7728729
  • 财政年份:
    2001
  • 资助金额:
    $ 33.17万
  • 项目类别:
Accurate Molecular Modeling in Structural Genomics
结构基因组学中的精确分子建模
  • 批准号:
    6364131
  • 财政年份:
    2001
  • 资助金额:
    $ 33.17万
  • 项目类别:
Accurate Molecular Modeling in Structural Genomics
结构基因组学中的精确分子建模
  • 批准号:
    6526067
  • 财政年份:
    2001
  • 资助金额:
    $ 33.17万
  • 项目类别:
Accurate Modeling in Structural Genomics
结构基因组学的精确建模
  • 批准号:
    8578932
  • 财政年份:
    2001
  • 资助金额:
    $ 33.17万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
  • 批准号:
    2317873
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 33.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了