Statistical Methods for Complex Enivronmental Health Data

复杂环境健康数据的统计方法

基本信息

  • 批准号:
    8019720
  • 负责人:
  • 金额:
    $ 37.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-02-18 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Statistical Methods for Complex Environmental Health Data Project Summary Ambient particulate matter (PM) air pollution is a major threat to public health, but current approaches to setting air quality standards do not reflect the complex multi-pollutant nature of the PM chemical mixture. Recent work indicates that opportunities may exist to reduce the public health burden of ambient PM by targeting the sources of PM that produce the most harmful chemical constituents. Currently, the scientific basis for developing new multi-pollutant air quality intervention strategies is insufficient and available statistical methods do not adequately address the challenges presented by the data. The investigators have developed widely-used statistical methodology for conducting national epidemiological studies of ambient air pollution and health and have identified the critical need for a new set of statistical methods for assessing the health effects of complex air pollutant mixtures. The first aim will develop a spatial-temporal Bayesian hierarchical multivariate receptor model for identifying sources of air pollution chemical mixtures and estimating their effect on population health outcomes. Innovation focuses on (a) conducting an integrated national assessment of the health effects of pollution sources; (b) the use of spatial-temporal models for source apportionment; and (c) the introduction of national databases on source profiles and emissions to inform model development and parameter estimation. The second aim will develop novel multivariate spatial-temporal models for estimating community-level health effects of ambient environmental exposures, accounting for spatial misalignment and measurement error. The third aim will apply the newly developed statistical methods to data from a national study of air pollution and health outcomes, the Medicare Cohort Air Pollution Study, to (a) estimate short-term population health effects of PM sources on a national, regional, and local scale; (b) estimate short- and long-term health effects of PM constituents and identify the sources of toxic constituents. The fourth aim will develop modular and extensible open source software implementing new statistical methods. By providing critical evidence about the relative toxicities of PM constituents and sources in a national study and by developing novel statistical approaches to overcome current methodological challenges, the aims of this application will lay the foundation for targeted interventions and air quality control strategies that will have a substantial public health impact across broad populations. PUBLIC HEALTH RELEVANCE: Relevance Ambient particle air pollution is a major public health problem and current approaches to regulating pollutant levels are sub-optimal. This project will develop novel statistical methods to be applied to national databases for estimating the health effects of ambient particle air pollution chemical constituents and sources. The evidence generated by this work will serve as the foundation for more targeted air quality control strategies.
描述(由申请人提供):复杂环境健康数据的统计方法项目摘要环境颗粒物(PM)空气污染是对公众健康的主要威胁,但目前制定空气质量标准的方法不能反映PM化学混合物的复杂多污染物性质。最近的研究表明,通过针对产生最有害化学成分的PM的来源,可能存在减少环境PM的公共健康负担的机会。目前,制定新的多污染物空气质量干预战略的科学基础不足,现有的统计方法不足以应对数据提出的挑战。调查人员开发了广泛使用的统计方法,用于进行环境空气污染和健康的国家流行病学研究,并确认迫切需要一套新的统计方法来评估复杂的空气污染物混合物对健康的影响。第一个目标将开发一个时空贝叶斯分层多变量受体模型,用于识别空气污染化学混合物的来源并估计其对人群健康结果的影响。创新的重点是:(A)对污染源对健康的影响进行综合的国家评估;(B)利用时空模型进行污染源分析;(C)采用关于污染源概况和排放的国家数据库,为模型开发和参数估计提供信息。第二个目标将开发新的多变量时空模型,用于估计环境暴露对社区层面的健康影响,考虑到空间错位和测量误差。第三个目标是将新开发的统计方法应用于空气污染和健康结果的全国性研究--医疗保险队列空气污染研究--的数据,以(A)在国家、地区和地方范围内估计PM来源对人口健康的短期影响;(B)估计PM成分的短期和长期健康影响,并确定有毒成分的来源。第四个目标是开发模块化和可扩展的开放源码软件,采用新的统计方法。通过在一项全国性研究中提供关于PM成分和来源的相对毒性的关键证据,并通过开发新的统计方法来克服当前的方法学挑战,这项应用的目的将为有针对性的干预和空气质量控制战略奠定基础,这些战略将对广大人口的公共健康产生重大影响。 公共健康相关性:环境颗粒物空气污染是一个主要的公共健康问题,目前控制污染物水平的方法是次优的。该项目将开发新的统计方法,应用于国家数据库,以评估环境颗粒物污染的化学成分和来源对健康的影响。这项工作产生的证据将作为更有针对性的空气质量控制战略的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROGER PENG其他文献

ROGER PENG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROGER PENG', 18)}}的其他基金

NIH R25 - A Training Module for Reproducible Data Science Research
NIH R25 - 可重复数据科学研究的培训模块
  • 批准号:
    10807490
  • 财政年份:
    2021
  • 资助金额:
    $ 37.29万
  • 项目类别:
A Training Module for Reproducible Data Science Research
可重复数据科学研究的培训模块
  • 批准号:
    10409825
  • 财政年份:
    2021
  • 资助金额:
    $ 37.29万
  • 项目类别:
A Training Module for Reproducible Data Science Research
可重复数据科学研究的培训模块
  • 批准号:
    10199242
  • 财政年份:
    2021
  • 资助金额:
    $ 37.29万
  • 项目类别:
NIH R25 - A Training Module for Reproducible Data Science Research
NIH R25 - 可重复数据科学研究的培训模块
  • 批准号:
    10663171
  • 财政年份:
    2021
  • 资助金额:
    $ 37.29万
  • 项目类别:
Extreme Heat and Human Health: Characterizing Vulnerability in a Changing Climate
极端高温与人类健康:描述气候变化中的脆弱性
  • 批准号:
    8308530
  • 财政年份:
    2011
  • 资助金额:
    $ 37.29万
  • 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
  • 批准号:
    8402810
  • 财政年份:
    2011
  • 资助金额:
    $ 37.29万
  • 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
  • 批准号:
    8231319
  • 财政年份:
    2011
  • 资助金额:
    $ 37.29万
  • 项目类别:
Extreme Heat and Human Health: Characterizing Vulnerability in a Changing Climate
极端高温与人类健康:描述气候变化中的脆弱性
  • 批准号:
    8148057
  • 财政年份:
    2011
  • 资助金额:
    $ 37.29万
  • 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
  • 批准号:
    8600272
  • 财政年份:
    2011
  • 资助金额:
    $ 37.29万
  • 项目类别:
Statistical Methods for Complex Enivronmental Health Data
复杂环境健康数据的统计方法
  • 批准号:
    8795714
  • 财政年份:
    2011
  • 资助金额:
    $ 37.29万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.29万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了