An Intelligent Capsule Endoscopy Video Analysis Software Platform
智能胶囊内窥镜视频分析软件平台
基本信息
- 批准号:8195537
- 负责人:
- 金额:$ 24.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureAreaArizonaBronchoscopyCancer EtiologyClassificationClinicColonColonoscopyColorComputer softwareCystoscopyDetectionDevelopmentDiagnosisDiseaseEndoscopesEndoscopyEsophagusEvaluationGasesGastrointestinal DiseasesGastrointestinal tract structureHemorrhageHourImageImageryImaging TechniquesIndustryLaparoscopyMalignant NeoplasmsManualsMarketingMedicalMethodsPatientsPhaseProceduresProcessRadioactiveResearchSmall Business Innovation Research GrantSmall IntestinesStomachSurfaceSystemTechniquesTechnologyTestingThree-dimensional analysisTimeUlcerUnited StatesWaterWireless TechnologyWorkcapsulecommercializationcostdesigndisease classificationdisease diagnosisdisorder preventionfallsgastrointestinalimage processingimaging Segmentationimprovedinstrumentnovelpillprogramsreconstructionresearch and developmentsoftware systemsthree-dimensional modelingtool
项目摘要
DESCRIPTION (provided by applicant): Gastrointestinal (GI) malignancies are the most common cause of cancer in the world. Of the 10.8 million people in the world each year who develop cancer, approximately 3.3 million have GI malignancies. Until recently, the only sections of the GI tract that could be imaged were the esophagus, stomach and colon through traditional endoscopy. Initial segments of the small bowel were imaged using techniques such as push enteroscopy or radioactive imaging techniques, but these methods present significant discomfort to the patients, costly, or lack sensitivity. Capsule endoscopy (CE) is a new technique that is changing the landscape of GI endoscopic diagnosis. CE is a widely acclaimed breakthrough in GI, especially small bowel imaging. However, current CE video display/analysis software (SW) is falling far behind. It has limitations including lengthy video viewing and interpreting time (e.g. ~2 hours) and is difficult in analyzing (e.g. visualizing) findings. These SW issues have incurred considerable amount of costs to patients, and need to be addressed urgently. To address this problem, together with our collaborators, we propose to develop a novel software system to fully automate the video review process and achieve comprehensive and accurate disease analysis. The proposed software system will have the following clinic impact and significance: 3/4 Fully automated and efficient disease detection and classification from CE videos; 3/4 Comprehensive visualization or analysis tool for more accurate disease diagnosis; 3/4 No more missing GI disorder areas from the review process; 3/4 A low cost SW system for better mass acceptance and effective disease prevention; and 3/4 Modular, expandable, and scalable technology. The proprietary software modular (functionally) technology developed can be easily applied to existing diagnosis instruments. The Millennium Research Group predicted the capsule endoscopy market to generate more than $180 million in 2009 in the United States alone - up from just $40 million in 2004. The predicted CAGR is 35.1% during 2008 - 2015. According to Given Imaging Ltd., more than one million patients worldwide have gone through capsule endoscopy procedure using their PillCam capsules. Capsule endoscopy is a rapidly-growing multi-billion dollar market (predicted to reach billion dollar mark in 2015 worldwide). The commercialization potential of the proposed software system and technology is significant.
PUBLIC HEALTH RELEVANCE: The software system and technology developed under this SBIR project will provide great benefit to GI patients by providing cost saving and highly accurate GI tract disease finding and analysis software platform. The proposed software will transform the current manual review method into a fully automatic process. With the extended capability over current endoscopes, the proposed SW system is expected to have a reasonably large market share of this 10 billion dollar industry. Other medical areas benefitting from this research include bronchoscopy, colonoscopy, enteroscopy, cystoscopy, laparoscopy, and capsule endoscope. Non-medical fields to benefit this technology include commercial perimeter surveillance, and water and gas pipe inspection - another multi-billion market.
描述(由申请人提供):胃肠道(GI)恶性肿瘤是世界上最常见的癌症原因。全世界每年有1080万人患癌症,其中约330万人患有胃肠道恶性肿瘤。直到最近,通过传统的内窥镜检查,可以成像的胃肠道的唯一部分是食道、胃和结肠。小肠的初始段使用诸如推进式肠镜检查或放射性成像技术的技术进行成像,但是这些方法给患者带来显著的不适、昂贵或缺乏灵敏度。胶囊式内窥镜(CE)是一种新技术,正在改变胃肠道内窥镜诊断的前景。CE是GI,特别是小肠成像领域的一项广受赞誉的突破。然而,目前的CE视频显示/分析软件(SW)远远落后。它具有局限性,包括冗长的视频观看和解释时间(例如~2小时),并且难以分析(例如可视化)结果。这些软件问题给患者带来了相当大的成本,需要紧急解决。为了解决这个问题,我们与我们的合作者一起,建议开发一种新的软件系统,以完全自动化视频审查过程,并实现全面准确的疾病分析。拟议的软件系统将具有以下临床影响和意义:3/4完全自动化和有效的疾病检测和分类CE视频; 3/4综合可视化或分析工具,用于更准确的疾病诊断; 3/4审查过程中不再遗漏GI疾病区域; 3/4低成本软件系统,用于更好的群众接受和有效的疾病预防;和3/4模块化、可扩展和可升级技术。开发的专有软件模块化(功能)技术可以很容易地应用于现有的诊断仪器。 千禧年研究小组预测,仅在美国,胶囊式内窥镜市场2009年的收入就将超过1.8亿美元,而2004年仅为4000万美元。2008 - 2015年的预测复合年增长率为35.1%。根据Given Imaging Ltd.的说法,全球已有超过一百万患者使用PillCam胶囊进行胶囊式内窥镜检查。胶囊式内窥镜是一个快速增长的数十亿美元市场(预计2015年全球将达到10亿美元大关)。拟议的软件系统和技术的商业化潜力是巨大的。
公共卫生相关性:在此SBIR项目下开发的软件系统和技术将通过提供节省成本和高度准确的胃肠道疾病发现和分析软件平台,为胃肠道患者带来巨大利益。拟议的软件将把目前的人工审查方法转变为全自动程序。由于现有内窥镜的扩展功能,预计申报软件系统将在这一价值100亿美元的行业中占据相当大的市场份额。其他受益于这项研究的医疗领域包括支气管镜检查、结肠镜检查、肠镜检查、膀胱镜检查、腹腔镜检查和胶囊内窥镜检查。受益于这项技术的非医疗领域包括商业周边监控,以及水和天然气管道检查-另一个数十亿美元的市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Yi其他文献
Steven Yi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Yi', 18)}}的其他基金
A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
- 批准号:
10624329 - 财政年份:2021
- 资助金额:
$ 24.67万 - 项目类别:
A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
- 批准号:
10251746 - 财政年份:2021
- 资助金额:
$ 24.67万 - 项目类别:
A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
- 批准号:
10609223 - 财政年份:2021
- 资助金额:
$ 24.67万 - 项目类别:
Wound management through quantitative documentation and prediction
通过定量记录和预测进行伤口管理
- 批准号:
10447880 - 财政年份:2020
- 资助金额:
$ 24.67万 - 项目类别:
Wound management through quantitative documentation and prediction
通过定量记录和预测进行伤口管理
- 批准号:
10469685 - 财政年份:2020
- 资助金额:
$ 24.67万 - 项目类别:
Wound management through quantitative documentation and prediction
通过定量记录和预测进行伤口管理
- 批准号:
10081799 - 财政年份:2020
- 资助金额:
$ 24.67万 - 项目类别:
A Low-Cost and Convenient Solution for Hearing Aid Shell Manufacturing
助听器外壳制造的低成本、便捷的解决方案
- 批准号:
9905577 - 财政年份:2018
- 资助金额:
$ 24.67万 - 项目类别:
Augmenting Endoscopic Instruments with Real-time 3D Imaging
通过实时 3D 成像增强内窥镜仪器
- 批准号:
9339459 - 财政年份:2017
- 资助金额:
$ 24.67万 - 项目类别:
Wound healing progress tracking through mobile devices
通过移动设备跟踪伤口愈合进度
- 批准号:
9605561 - 财政年份:2017
- 资助金额:
$ 24.67万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 24.67万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 24.67万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 24.67万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 24.67万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant














{{item.name}}会员




