Real-time 3D Imaging Guided ART

实时 3D 成像引导 ART

基本信息

  • 批准号:
    8902326
  • 负责人:
  • 金额:
    $ 32.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The United States have the highest annual incidence rates of breast cancer in the word. It is the second-most common cancer (after skin cancer) and the second-most common cause of cancer death (after lung cancer). . It is estimated that, in 2014, there will be an estimated 1,665,540 new cancer cases diagnosed and 585,720 cancer deaths in the US. Worldwide more than one million new cases of breast cancer are found every year. Apparently, an effective or accurate, minimally invasive, and low-cost solution for breast cancer treatment will have enormous clinic impact and significance on saving women's lives. To address the problems and technical challenges facing breast radiation therapy (RT), together with its collaborator, we proposes a radically different methodology called 4D SGRT technology to dynamically compute on-treatment breast anatomy structure and adaptively re-plan the radiation therapy. The proposed technology uses a non-invasive and adaptive image guidance based methodology. It eliminates uncertainties due to setup, mobility, and deformation for optimized delivery. It is also expected to shortened breast RT session with improved accuracy, and reduces minimum treatment setup time. Successful completion of the project will provide foundation for the next generation breast RT, and make it possible for millions of breast cancer patients to benefit from the most recent technological advances in a timely fashion. The radiation therapy market is growing rapidly with annual cancer rates worldwide projected to increase by fifty percent by 2020, mainly due to aging population, increasing number of smokers and unhealthy life styles. The Fredonia Group estimated that U.S. has $16.8 billion US market for cancer therapies, and it is growing ten percent annually. With over 2,000 radiation treatment machines in the US and many more in the world, the market for a clinically acceptable 3D camera enabled adaptive therapy system is significant.
 描述(申请人提供):美国是世界上乳腺癌年发病率最高的国家。它是第二常见的癌症(仅次于皮肤癌)和第二常见的癌症死亡原因(仅次于肺癌)。.据估计,在2014年,美国将有估计1,665,540例新诊断的癌症病例和585,720例癌症死亡。全世界每年发现超过100万例新的乳腺癌病例。显然,一种有效或准确、微创、低成本的乳腺癌治疗方案将对挽救妇女生命产生巨大的临床影响和意义。 为了解决乳腺放射治疗(RT)面临的问题和技术挑战,我们与合作者一起提出了一种完全不同的方法,称为4D SGRT技术,用于动态计算治疗中的乳腺解剖结构并自适应地重新规划放射治疗。所提出的技术使用非侵入性和自适应图像引导为基础的方法。它消除了由于设置、移动性和变形而产生的不确定性,从而优化了输送。它还有望缩短乳房RT疗程,提高准确性,并减少最小治疗设置时间。 该项目的成功完成将为下一代乳腺RT奠定基础,并使数百万乳腺癌患者能够及时受益于最新的技术进步。放射治疗市场正在迅速增长,预计到2020年全球癌症发病率将增加50%,主要原因是人口老龄化,吸烟者人数增加和不健康的生活方式。弗雷多尼亚集团估计,美国有168亿美元的癌症治疗市场,每年增长10%。美国有超过2,000台放射治疗机,世界上还有更多,临床上可接受的3D摄像机自适应治疗系统的市场非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Yi其他文献

Steven Yi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Yi', 18)}}的其他基金

A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
  • 批准号:
    10624329
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
  • 批准号:
    10251746
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
  • 批准号:
    10609223
  • 财政年份:
    2021
  • 资助金额:
    $ 32.58万
  • 项目类别:
Wound management through quantitative documentation and prediction
通过定量记录和预测进行伤口管理
  • 批准号:
    10447880
  • 财政年份:
    2020
  • 资助金额:
    $ 32.58万
  • 项目类别:
Wound management through quantitative documentation and prediction
通过定量记录和预测进行伤口管理
  • 批准号:
    10469685
  • 财政年份:
    2020
  • 资助金额:
    $ 32.58万
  • 项目类别:
Wound management through quantitative documentation and prediction
通过定量记录和预测进行伤口管理
  • 批准号:
    10081799
  • 财政年份:
    2020
  • 资助金额:
    $ 32.58万
  • 项目类别:
A Low-Cost and Convenient Solution for Hearing Aid Shell Manufacturing
助听器外壳制造的低成本、便捷的解决方案
  • 批准号:
    9905577
  • 财政年份:
    2018
  • 资助金额:
    $ 32.58万
  • 项目类别:
Augmenting Endoscopic Instruments with Real-time 3D Imaging
通过实时 3D 成像增强内窥镜仪器
  • 批准号:
    9339459
  • 财政年份:
    2017
  • 资助金额:
    $ 32.58万
  • 项目类别:
Wound healing progress tracking through mobile devices
通过移动设备跟踪伤口愈合进度
  • 批准号:
    9605561
  • 财政年份:
    2017
  • 资助金额:
    $ 32.58万
  • 项目类别:
An Intelligent Capsule Endoscopy Video Analysis Software Platform
智能胶囊内窥镜视频分析软件平台
  • 批准号:
    8195537
  • 财政年份:
    2011
  • 资助金额:
    $ 32.58万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了