Imaging/Bioinformatics Core

成像/生物信息学核心

基本信息

项目摘要

Cellular responses are heterogeneous, tissue specific, and a function of the history of a cell and its genome. In dealing with the heterogeneity of multiple model systems plus in-vivo studies, each proposed project will generate a large number of specimens for detailed quantitative and correlative analyses. The Imaging Bioinformatics Core will complement and extend the presently developed BioSig framework with two objectives: (1) to provide a fully annotated set of representative samples that are imaged at different resolutions, and (2) to populate databases that link anonymous patient data to mammography, breast density and expression profile data plus data obtained from histological analyses. For this objective annotation refers to user's input and feature-based representations that are computed using image analysis techniques. The first goal will target Projects 2, 3, and 4, and the second goal will target all Projects and Cores. Detailed quantitative representation of data enables comparative analysis of images based on their content, while linking data from different modalities enables event correlation and information visualization. Quantitative representation will be applied to (1) low-resolution compositional analysis of breast density, (2) low-resolution 3D modeling of ductal tree structures from regions of high and low breast density, (3) high-resolution 2D and 3D morphological and protein localization studies, and (4) analysis of expression profiles in support of Project 2. Compositional analysis will investigate the ratio of epithelial, stroma and adipose in low- and high-density regions. 3D representation of ductal tree structures enables comparative morphological analysis between different regions of breast tissue and quantitative analysis of high-resolution image data enables morphological and protein expression analysis using markers that target specific inter- and intracellular activities in tissue or cultured multicellular systems. The Core will couple user-defined annotations with the raw data and their computed annotations to (1) enable navigation between different data modalities, (2) provide graph-based queries, and (3) view the results through a Web-based interface in the form of plots, scatter diagrams, or images. This core enables sharing of data with collaborating investigators outside of the program project. The core will leverage the BioSig framework (developed at LBNL) and GeneTraffic platform (developed at lobion) in support of analysis of images through microscopy and microarray studies. The Core will extend the current ontology for managing radiological data, construct 3D models of the breast from Egan slices, and develop software tools to overlay gene expression and patterns of protein expression onto this 3D space for meaningful information visualization. The Core will enable navigation and query of this heterogeneous data space through graphical model, common schema, and controlled vocabulary. Quantitative representation of images and their annotation will be accessible to the BioStatistics Core for detailed sensitivity analysis.
细胞反应是异质的、组织特有的,并且是细胞及其基因组历史的函数。在……里面 处理多个模型系统的异质性加上体内研究,每个拟议的项目都将产生 采集大量标本,进行详细的定量和相关分析。影像生物信息学的核心 将补充和扩展目前开发的BioSig框架,具有两个目标:(1)提供充分的 以不同分辨率成像的一组带注释的代表性样本,以及(2)填充数据库 将匿名患者数据链接到乳房X光检查、乳房密度和表情特征数据以及获得的数据 来自组织学分析。为了达到这个目的,注记指的是用户的输入和基于要素的表示 使用图像分析技术进行计算。第一个目标将针对项目2、3和4,第二个目标将以项目2、3和4为目标 目标将以所有项目和核心为目标。数据的详细量化表示使比较分析成为可能 基于图像内容的图像,同时链接来自不同医疗设备的数据,从而实现事件关联和 信息可视化。定量表示将应用于(1)低分辨率成分分析 乳房密度,(2)乳房上下区域的导管树结构的低分辨率3D建模 密度,(3)高分辨率2D和3D形态和蛋白质定位研究,以及(4)分析 支持项目2的表达谱。成分分析将调查上皮、间质的比率 以及低密度和高密度区域的脂肪。导管树结构的3D表示能够进行比较 乳腺组织不同区域的形态分析及高分辨率定量分析 图像数据使用针对特定间隔物和蛋白质的标记来实现形态和蛋白质表达分析 组织或培养的多细胞系统中的细胞内活动。核心将结合用户定义的注释 利用原始数据及其计算的注释来(1)实现不同数据形态之间的导航,(2) 提供基于图形的查询,以及(3)通过基于Web的界面以曲线图、散点图的形式查看结果 图表或图像。此核心支持与计划外的协作调查人员共享数据 项目。核心将利用BioSig框架(在LBNL开发)和基因交通平台(在LBNL开发 Lobon),以支持通过显微镜和微阵列研究进行图像分析。核心将扩展 目前用于管理放射数据的本体,从Egan切片构建乳房的3D模型,并开发 软件工具将基因表达和蛋白质表达模式叠加到这个3D空间上,以实现有意义的 信息可视化。核心将通过以下方式实现对此异类数据空间的导航和查询 图形模型、公共架构和受控词汇表。图像及其图像的量化表示 生物统计核心将可以访问注释以进行详细的敏感性分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bahram A. Parvin其他文献

Bahram A. Parvin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bahram A. Parvin', 18)}}的其他基金

A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
  • 批准号:
    10635290
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
Stratifying brain tumors by structural subtyping and heterogeneity
通过结构亚型和异质性对脑肿瘤进行分层
  • 批准号:
    9813397
  • 财政年份:
    2019
  • 资助金额:
    $ 28.44万
  • 项目类别:
High Content Representation and Association of 3D Cell Culture Models
3D 细胞培养模型的高内涵表示和关联
  • 批准号:
    8104220
  • 财政年份:
    2011
  • 资助金额:
    $ 28.44万
  • 项目类别:
High Content Representation and Association of 3D Cell Culture Models
3D 细胞培养模型的高内涵表示和关联
  • 批准号:
    8250327
  • 财政年份:
    2011
  • 资助金额:
    $ 28.44万
  • 项目类别:
High Content Representation and Association of 3D Cell Culture Models
3D 细胞培养模型的高内涵表示和关联
  • 批准号:
    8445168
  • 财政年份:
    2011
  • 资助金额:
    $ 28.44万
  • 项目类别:
High Content Representation and Association of 3D Cell Culture Models
3D 细胞培养模型的高内涵表示和关联
  • 批准号:
    8607905
  • 财政年份:
    2011
  • 资助金额:
    $ 28.44万
  • 项目类别:
Imaging/Bioinformatics Core
成像/生物信息学核心
  • 批准号:
    7866586
  • 财政年份:
  • 资助金额:
    $ 28.44万
  • 项目类别:
CORE--BIOINFORMATICS
核心--生物信息学
  • 批准号:
    7681598
  • 财政年份:
  • 资助金额:
    $ 28.44万
  • 项目类别:
Imaging/Bioinformatics Core
成像/生物信息学核心
  • 批准号:
    7615726
  • 财政年份:
  • 资助金额:
    $ 28.44万
  • 项目类别:

相似海外基金

Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
  • 批准号:
    2421267
  • 财政年份:
    2024
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Standard Grant
Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
  • 批准号:
    2409876
  • 财政年份:
    2024
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Standard Grant
Open Access Block Award 2024 - EMBL - European Bioinformatics Institute
2024 年开放获取区块奖 - EMBL - 欧洲生物信息学研究所
  • 批准号:
    EP/Z532678/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Research Grant
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
  • 批准号:
    BB/X018571/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Research Grant
PDB Management by The Research Collaboratory for Structural Bioinformatics
结构生物信息学研究合作实验室的 PDB 管理
  • 批准号:
    2321666
  • 财政年份:
    2024
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Cooperative Agreement
Planning Proposal: CREST Center in Bioinformatics
规划方案:CREST生物信息学中心
  • 批准号:
    2334642
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Continuing Grant
Building a Bioinformatics Ecosystem for Agri-Ecologists
为农业生态学家构建生物信息学生态系统
  • 批准号:
    BB/X018768/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Research Grant
Integrative viral genomics and bioinformatics platform
综合病毒基因组学和生物信息学平台
  • 批准号:
    MC_UU_00034/5
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
    Intramural
Bioinformatics Core
生物信息学核心
  • 批准号:
    10404414
  • 财政年份:
    2023
  • 资助金额:
    $ 28.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了