BIOINFORMATIC CORE
生物信息学核心
基本信息
- 批准号:8143196
- 负责人:
- 金额:$ 8.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsBioinformaticsBiologicalComorbidityComplexCongenital AbnormalityCongenital diaphragmatic herniaDataData SetDevelopmentDiaphragmatic HerniaDiseaseDoctor of PhilosophyFamily memberGene MutationGenesGenetic VariationGenomeHeartHumanKnowledgeLoss of HeterozygosityLungMethodsModelingMolecularOntologyPathway interactionsPatientsPhenotypeProteinsProteomeProteomicsReportingResearch DesignRisk FactorsSequence AnalysisSourceSystembasedesignexomegenome wide association studygenome-wideknockout genenovelprogramsprotein protein interactiontool
项目摘要
INTRODUCTION and OBJECTIVES:
It has been shown that proteins involved in similar Mendelian and complex phenotypes have a strong tendency to interact directly and physically in human protein interaction networks. In particular, first order interactions have been explored in a number of methods for prioritizing candidates in linkage regions associated with a particular phenotype. However, these strategies lose their power when the loci become too big, perhaps because they are confined to using direct first order interactions or use gene ontology and expression data, to predict higher order physical interactions. General methods for genome-scale prioritization of candidates in a phenotype based on protein interaction network data, have to our knowledge not been reported, particularly in the search for molecular causes of birth defects.
In numerous complex disorders, Genome Wide Association studies (GWAS) have incriminated genes in the same disease that are not known to obviously participate in the same cellular pathway. This could be because there is no pathway relationship connecting the genes or because we do not have a complete overview of all biological pathways or knowledge of their crosstalk. If the latter reason is correct, a lack of knowledge on the precise composition of many pathways must be taken into account when constructing models that systematically uses pathway relationships to determine novel components in complex disorders.
Here, we present a model that in a given disease, determines if a candidate significantly interacts with known disease causing proteins in higher order interaction networks. A component of this model is refined large-scale proteomics data, meaning it is not confined to or biased towards existing well-known pathways. In this way, our model mirrors the pathway independent discovery in genome-wide association studies. This
model has the power to make accurate genome-wide predictions of risk factors in a complex phenotype.
引言和目标:
研究表明,在人类蛋白质相互作用网络中,具有相似孟德尔表型和复杂表型的蛋白质具有直接相互作用和物理相互作用的强烈倾向。具体地说,已经在许多方法中探索了一级相互作用,用于在与特定表型相关联的连锁区域中优先选择候选基因。然而,当基因座变得太大时,这些策略就会失去效力,可能是因为它们仅限于使用直接的一阶相互作用或使用基因本体论和表达数据来预测更高阶的物理相互作用。据我们所知,基于蛋白质相互作用网络数据对表型候选进行基因组规模优先排序的一般方法尚未见报道,特别是在寻找出生缺陷的分子原因方面。
在许多复杂的疾病中,基因组广泛关联研究(Genome Wide Association Studs,GWAS)已经将一些未知的基因与相同疾病联系在一起,这些基因显然参与了相同的细胞途径。这可能是因为没有连接基因的途径关系,也可能是因为我们没有对所有生物途径的完整概述或对它们的串扰的了解。如果后一种理由是正确的,则在构建系统地使用途径关系来确定复杂疾病中的新成分的模型时,必须考虑到缺乏对许多途径的准确组成的知识。
在这里,我们提出了一个模型,在给定的疾病中,确定候选蛋白是否与高阶相互作用网络中的已知致病蛋白显著相互作用。这个模型的一个组成部分是精炼的大规模蛋白质组学数据,这意味着它不局限于现有的众所周知的途径或对现有的众所周知的途径有偏见。通过这种方式,我们的模型反映了全基因组关联研究中的路径独立发现。这
模型有能力对复杂表型中的风险因素进行准确的全基因组预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PATRICIA K DONAHOE其他文献
PATRICIA K DONAHOE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PATRICIA K DONAHOE', 18)}}的其他基金
PROJECT II: VARIANTS FROM COMPLEMENTARY GENOMIC TECHNOLOGIES WILL YIELD
项目二:互补基因组技术的变体将会产生
- 批准号:
8143191 - 财政年份:2011
- 资助金额:
$ 8.21万 - 项目类别:
Program Project: GENE MUTATION AND RESCUE IN HUMAN DIAPHRAGMATIC HERNIA
计划项目:人类膈疝的基因突变与挽救
- 批准号:
8291254 - 财政年份:2011
- 资助金额:
$ 8.21万 - 项目类别:
Mouse Models Will Elucidate Genetics of CDH and Associated Pulmonary Defects and Identify Clinically Relevant Targets
小鼠模型将阐明 CDH 和相关肺部缺陷的遗传学并确定临床相关目标
- 批准号:
10159742 - 财政年份:2011
- 资助金额:
$ 8.21万 - 项目类别:
Program Project: GENE MUTATION AND RESCUE IN HUMAN DIAPHRAGMATIC HERNIA
计划项目:人类膈疝的基因突变与挽救
- 批准号:
8515483 - 财政年份:2011
- 资助金额:
$ 8.21万 - 项目类别:
Program Project: GENE MUTATION AND RESCUE IN HUMAN DIAPHRAGMATIC HERNIA
计划项目:人类膈疝的基因突变与挽救
- 批准号:
8079810 - 财政年份:2011
- 资助金额:
$ 8.21万 - 项目类别:
PROJECT I; POLYGENIC CAUSES of ISOLATED and NON-SYNDROMIC CONGENITAL
项目一;
- 批准号:
8143184 - 财政年份:2011
- 资助金额:
$ 8.21万 - 项目类别:
Program Project: GENE MUTATION AND RESCUE IN HUMAN DIAPHRAGMATIC HERNIA
计划项目:人类膈疝的基因突变与挽救
- 批准号:
8708173 - 财政年份:2011
- 资助金额:
$ 8.21万 - 项目类别:
相似海外基金
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
- 批准号:
RGPIN-2019-06640 - 财政年份:2022
- 资助金额:
$ 8.21万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics Algorithms for Protein Interactions and Applications
蛋白质相互作用和应用的生物信息学算法
- 批准号:
RGPIN-2021-03978 - 财政年份:2022
- 资助金额:
$ 8.21万 - 项目类别:
Discovery Grants Program - Individual
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
- 批准号:
RGPIN-2019-06640 - 财政年份:2021
- 资助金额:
$ 8.21万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics Algorithms for Protein Interactions and Applications
蛋白质相互作用和应用的生物信息学算法
- 批准号:
RGPIN-2021-03978 - 财政年份:2021
- 资助金额:
$ 8.21万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics Algorithms
生物信息学算法
- 批准号:
CRC-2017-00215 - 财政年份:2021
- 资助金额:
$ 8.21万 - 项目类别:
Canada Research Chairs
Bioinformatics Algorithms and Software for Proteomics
蛋白质组学生物信息学算法和软件
- 批准号:
RGPIN-2016-03998 - 财政年份:2021
- 资助金额:
$ 8.21万 - 项目类别:
Discovery Grants Program - Individual
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
- 批准号:
RGPIN-2019-06640 - 财政年份:2020
- 资助金额:
$ 8.21万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics algorithms
生物信息学算法
- 批准号:
CRC-2017-00215 - 财政年份:2020
- 资助金额:
$ 8.21万 - 项目类别:
Canada Research Chairs
Bioinformatics algorithms
生物信息学算法
- 批准号:
CRC-2017-00215 - 财政年份:2019
- 资助金额:
$ 8.21万 - 项目类别:
Canada Research Chairs
Bioinformatics Algorithms and Software for Proteomics
蛋白质组学生物信息学算法和软件
- 批准号:
RGPIN-2016-03998 - 财政年份:2019
- 资助金额:
$ 8.21万 - 项目类别:
Discovery Grants Program - Individual