SHAPE OPTIMIZING DIFFEOMORPHISMS FOR COMPUTATIONAL BIOLOGY

计算生物学的形状优化微分形

基本信息

  • 批准号:
    8171180
  • 负责人:
  • 金额:
    $ 0.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This proposal will contribute a new collaboration for implementing rigorous spatiotemporal medical image analysis in a large scale computing environment. The system will dramatically enhance the neuroimaging community's quantitative understanding of normal and pathological aging and correlated variables. Medical images capture the changes that occur in an individual over time and samples the range of anatomical and functional differences visible in a population lifespan. Our goal is to associate these differences with causes, for example, innate population variability, injury, pathology, or the effects of genotype on phenotype. The recently proposed Diffeomorphometry (DM) system quantifies and relates these variables to an optimal spatiotemporal coordinate system. This novel technique allows the atlas to evolve in time along with the population to statistically capture effects of age, disease or other factors. This common, evolving map space gives a wealth of prior knowledge, allowing one to build probabilities describing ranges and types of variation in shape and function. These aggregate population attributes may then be studied and visualized, used in research, as well as teaching and diagnosis. Our DM method is designed with the axioms of symmetry (the algorithms must be symmetric) and specificity (the analysis should be optimal in the study space) in mind and with the ability to automatically generate database-specific atlases. The rigorous and symmetric definition of change given by DM captures differences in neuroanatomy with superlative accuracy, reproducibility and high level of detail. Consequently, a DM study maximizes the information extracted from a neuroimaging cohort, especially when correlated with, for instance, genetic or behavioral variables. Furthermore, DM satisfies pressing research needs in neuroimaging: DM derives optimal atlases from arbitrarily sized databases and gives large deformation optimization of anatomical correspondence, through landmark and statistical guidance. The resources in the UCLA Center for Computational Biology (CCB) will allow these methods to be applied on the large datasets they were designed for and at an unprecedented resolution and scale. The proposed work has three distinctive aims: collaboration, methodology and clinical evaluation/application: Instantiate a collaboration between UPenn and UCLA, where data and algorithms are shared and disseminated via the Center for Computational Biology; Develop Diffeomorphometry into a cutting-edge, large-scale, publicly available computational tool; Evaluate and refine the developed methodology, as well as compare with CCB brain mapping tools, on neuroimaging studies of structure-function associations under neurodegenerative conditions
这个子项目是众多研究子项目之一

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES C GEE其他文献

JAMES C GEE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES C GEE', 18)}}的其他基金

Multi-scale and multi-modality imaging of neuropathology in VCID
VCID 神经病理学的多尺度、多模态成像
  • 批准号:
    10812034
  • 财政年份:
    2023
  • 资助金额:
    $ 0.3万
  • 项目类别:
Advanced Normalization Tools
高级标准化工具
  • 批准号:
    10445130
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
Advanced Normalization Tools
高级标准化工具
  • 批准号:
    10708793
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
Establishing Common Coordinate Framework for Quantitative Cell Census in Developing Mouse Brains
建立小鼠大脑发育中定量细胞普查的通用坐标框架
  • 批准号:
    10088508
  • 财政年份:
    2020
  • 资助金额:
    $ 0.3万
  • 项目类别:
International Conference on Information Processing in Medical Imaging 2019
2019年医学影像信息处理国际会议
  • 批准号:
    9760660
  • 财政年份:
    2019
  • 资助金额:
    $ 0.3万
  • 项目类别:
ITK-Lung: A Software Framework for Lung Image Processing and Analysis
ITK-Lung:肺部图像处理和分析的软件框架
  • 批准号:
    9325271
  • 财政年份:
    2017
  • 资助金额:
    $ 0.3万
  • 项目类别:
A Community Resource for Single Cell Data in the Brain
大脑中单细胞数据的社区资源
  • 批准号:
    9415946
  • 财政年份:
    2017
  • 资助金额:
    $ 0.3万
  • 项目类别:
Waxholm Space for Rodent Neuroinformatics
啮齿动物神经信息学沃克斯霍姆空间
  • 批准号:
    9338327
  • 财政年份:
    2016
  • 资助金额:
    $ 0.3万
  • 项目类别:
Waxholm Space for Rodent Neuroinformatics
啮齿动物神经信息学沃克斯霍姆空间
  • 批准号:
    9763673
  • 财政年份:
    2016
  • 资助金额:
    $ 0.3万
  • 项目类别:
NON-AFFINE REGISTRATION
非仿射配准
  • 批准号:
    8363498
  • 财政年份:
    2011
  • 资助金额:
    $ 0.3万
  • 项目类别:

相似海外基金

BrainMaps - a unified web platform for novel model organism brain atlases
BrainMaps - 新型模型生物脑图谱的统一网络平台
  • 批准号:
    23KF0076
  • 财政年份:
    2023
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Sexual dimorphic cell type and connectivity atlases of the aging and AD mouse brains
衰老和 AD 小鼠大脑的性二态性细胞类型和连接图谱
  • 批准号:
    10740308
  • 财政年份:
    2023
  • 资助金额:
    $ 0.3万
  • 项目类别:
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
  • 批准号:
    10818803
  • 财政年份:
    2023
  • 资助金额:
    $ 0.3万
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10743857
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10558629
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
Multi-modal cell type atlases of somatosensory spinal cord neurons
体感脊髓神经元多模态细胞类型图谱
  • 批准号:
    10508739
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
Atlases and statistical modeling of vascular networks from medical images
医学图像血管网络的图谱和统计建模
  • 批准号:
    RGPIN-2018-05283
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
    Discovery Grants Program - Individual
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10570256
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
Ultra-high Resolution Structural Connectome Atlases of the Animal Brain and their Associated Toolbox
动物大脑的超高分辨率结构连接图谱及其相关工具箱
  • 批准号:
    10364874
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
  • 批准号:
    10467697
  • 财政年份:
    2022
  • 资助金额:
    $ 0.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了