REAL TIME DETECTION OF COGNITIVE STATES
实时检测认知状态
基本信息
- 批准号:8171195
- 负责人:
- 金额:$ 0.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectiveAlgorithmsAtlasesBrainBrain regionCigaretteCocaineCognitiveComputer Retrieval of Information on Scientific Projects DatabaseDataDetectionDevelopmentDrug abuseDrug userElectroencephalographyFeedbackFrequenciesFunctional Magnetic Resonance ImagingFundingGoalsGrantHealthImageImpulsivityInstitutionLearningLocationMachine LearningMagnetic Resonance ImagingMethamphetamineMethodsModelingPatientsPatternPhasePsyche structureResearchResearch PersonnelResourcesRunningSignal TransductionSourceTechnologyTimeUnited States National Institutes of HealthWorkaddictionbasecognitive controlcravingdesigndrug of abusehuman subjectindependent component analysisinnovationinstrumentationinterestmind controlneurofeedbackoperationpublic health relevancerelating to nervous systemresearch studytoolvolunteer
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Neurofeedback by real time functional MRI (rt-fMRI) has potential for addiction research and treatment that will be realized only if the feedback given the subject is related meaningfully to the cognitive states that must be controlled. The mental operations of the brain are too distributed to be represented by the raw rt-fMRI signal in any one brain region or small group of regions. Our aims are to: 1) Use computational machine learning to rapidly detect patterned activation in the rt-fMRI signal that better expresses cognitive state; 2) augment these data with concurrently-collected electroencephalographic (EEG) data; 3) develop an atlas of brain data that identifies brain patterns with cognitive states relevant to addiction and drug abuse research and 4) to explore rt-fMRI neurofeedback using this rt-fMRI/EEG machine learning method. Our approach will be to first create rapid algorithms for pattern matching that are fast compared with the imaging, thereby allowing "real-time" application. To do so we will select features from the images that express the differences among state concisely (more technically, we will use a method known as independent components analysis to reduce the data dimensionality.) We will similarly condense the EEG features by studying them by the location of their sources within the brain, and by examining the frequencies that they contain. We will run experiments on volunteers designed to help us see their tendency to make impulsive choices - which is known to relate to their likelihood to become drug users, as well as experiments that track changes in their brain as they control their craving urges. For these studies we will look at heavy cigarette users. Cigarette use on its own is a serious health burden to the nation, and it is also an excellent model for addiction more generally, as it is known to have many neural features in common with use of other drugs of abuse, such as cocaine and methamphetamine. This is a phased innovation proposal. The first phase will be focused on the developments of the rt-fMRI analysis and instrumentation technology. On its successful completion, based on specific milestones, we will move to the more applied work with human subjects. PUBLIC HEALTH RELEVANCE: Our research aims to develop and characterize a means of rapidly detecting brain states relevant to addiction research through the use of magnetic resonance imaging and electroencephalography. We are interested specifically in states and markers of impulsivity and cigarette craving. Our goal ultimately is to have a tool that can be used in the context of neurofeedback, allowing human subject or patient to receive an indication of activity in their brains associated with these states and to enable them to learn to control these cognitive/affective states by controlling the brain activity.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
真实的时间功能性磁共振成像(rt-fMRI)的神经反馈具有成瘾研究和治疗的潜力,只有当给予受试者的反馈与必须控制的认知状态有意义地相关时,才能实现。大脑的心理活动过于分散,无法用任何一个大脑区域或一小组区域的原始rt-fMRI信号来表示。我们的目标是:1)使用计算机器学习来快速检测rt-fMRI信号中更好地表达认知状态的模式激活; 2)使用同时收集的脑电图(EEG)数据来增强这些数据; 3)开发一个大脑数据图谱,识别与成瘾和药物滥用研究相关的认知状态的大脑模式; 4)使用这种rt-fMRI/EEG机器学习方法探索rt-fMRI神经反馈。我们的方法将是首先创建快速算法的模式匹配是快速的成像相比,从而允许“实时”的应用程序。为了做到这一点,我们将从图像中选择简洁地表达状态之间差异的特征(从技术上讲,我们将使用一种称为独立成分分析的方法来降低数据维度)。我们将通过研究脑电波在大脑中的来源位置,并通过检查它们所包含的频率,来类似地浓缩EEG特征。我们将对志愿者进行实验,旨在帮助我们了解他们做出冲动选择的倾向--这与他们成为吸毒者的可能性有关,我们还将进行实验,跟踪他们控制渴望冲动时大脑的变化。在这些研究中,我们将研究重度吸烟者。香烟本身的使用对国家来说是一个严重的健康负担,而且它也是更普遍的成瘾的一个很好的模型,因为它与使用其他滥用药物(如可卡因和甲基苯丙胺)有许多共同的神经特征。这是一个阶段性的创新方案。第一阶段将集中在rt-fMRI分析和仪器技术的发展。在其成功完成后,基于特定的里程碑,我们将转向与人类受试者的更多应用工作。公共卫生关系:我们的研究旨在开发和表征一种通过使用磁共振成像和脑电图快速检测与成瘾研究相关的大脑状态的方法。我们特别感兴趣的是冲动和香烟渴望的状态和标记。我们的最终目标是拥有一种可以在神经反馈的背景下使用的工具,允许人类受试者或患者接收与这些状态相关的大脑活动的指示,并使他们能够通过控制大脑活动来学习控制这些认知/情感状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Steven Cohen其他文献
Mark Steven Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Steven Cohen', 18)}}的其他基金
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8485686 - 财政年份:2012
- 资助金额:
$ 0.3万 - 项目类别:
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8386518 - 财政年份:2012
- 资助金额:
$ 0.3万 - 项目类别:
NANOCARRIER BASED INTRALYMPHATIC IMAGING AND THERAPY FOR MELANOMA
基于纳米载体的淋巴内成像和黑色素瘤治疗
- 批准号:
7959404 - 财政年份:2009
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8087592 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8104246 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7588944 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7690912 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8288263 - 财政年份:2008
- 资助金额:
$ 0.3万 - 项目类别:
FMRI OF INVERTED VISION: PLASTICITY OF VISUOSPATIAL MAPS
倒置视觉的 FMRI:视觉空间图的可塑性
- 批准号:
7606742 - 财政年份:2007
- 资助金额:
$ 0.3万 - 项目类别:
Comprehensive training in Neuroimaging Fundamentals and Applications
神经影像学基础和应用综合培训
- 批准号:
7488879 - 财政年份:2006
- 资助金额:
$ 0.3万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 0.3万 - 项目类别:
Research Grant














{{item.name}}会员




