Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
基本信息
- 批准号:8087592
- 负责人:
- 金额:$ 59.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-25 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAddressAffectiveAlgorithmsAnteriorAtlasesBase of the BrainBehaviorBrainBrain regionCigaretteClassificationClinicalCocaineCognitiveComplexComputer-Assisted Image AnalysisComputing MethodologiesDataData CollectionData SetDatabasesDetectionDevelopmentDevicesDimensionsDiscriminationDrug abuseDrug userElectroencephalogramElectroencephalographyElectrophysiology (science)EpilepsyFeedbackFour-dimensionalFrequenciesFunctional Magnetic Resonance ImagingGalvanic Skin ResponseGenerationsGoalsHealthHealthcareImageImaging technologyImpulsivityInterventionLearningLocationMachine LearningMagnetic Resonance ImagingMapsMeasuresMedicalMethamphetamineMethodsModelingPatientsPatternPharmaceutical PreparationsPhasePhysiologicalProxyPsyche structureReporterReportingResearchRestRunningScalp structureSchizophreniaShort-Term MemorySignal TransductionSourceStimulusStudy SubjectTechnologyTestingTimeTraumatic Brain InjuryWorkabstractingaddictionbaseblindchronic paincingulate cortexcognitive controlcravingdata spacedesigndiscountingdrug of abuseeffective interventionhuman subjectimprovedindependent component analysisinnovationinstrumentinstrumentationinterestmethod developmentmind controlneurofeedbackneuroimagingnoveloperationprogramspublic health relevancerelating to nervous systemresearch studyresponsesymposiumtooltrendvirtualvolunteer
项目摘要
DESCRIPTION (provided by applicant): Neurofeedback by real time functional MRI (rt-fMRI) has potential for addiction research and treatment that will be realized only if the feedback given the subject is related meaningfully to the cognitive states that must be controlled. The mental operations of the brain are too distributed to be represented by the raw rt-fMRI signal in any one brain region or small group of regions. Our aims are to: 1) Use computational machine learning to rapidly detect patterned activation in the rt-fMRI signal that better expresses cognitive state; 2) augment these data with concurrently-collected electroencephalographic (EEG) data; 3) develop an atlas of brain data that identifies brain patterns with cognitive states relevant to addiction and drug abuse research and 4) to explore rt-fMRI neurofeedback using this rt-fMRI/EEG machine learning method. Our approach will be to first create rapid algorithms for pattern matching that are fast compared with the imaging, thereby allowing "real-time" application. To do so we will select features from the images that express the differences among state concisely (more technically, we will use a method known as independent components analysis to reduce the data dimensionality.) We will similarly condense the EEG features by studying them by the location of their sources within the brain, and by examining the frequencies that they contain. We will run experiments on volunteers designed to help us see their tendency to make impulsive choices - which is known to relate to their likelihood to become drug users, as well as experiments that track changes in their brain as they control their craving urges. For these studies we will look at heavy cigarette users. Cigarette use on its own is a serious health burden to the nation, and it is also an excellent model for addiction more generally, as it is known to have many neural features in common with use of other drugs of abuse, such as cocaine and methamphetamine. This is a phased innovation proposal. The first phase will be focused on the developments of the rt-fMRI analysis and instrumentation technology. On its successful completion, based on specific milestones, we will move to the more applied work with human subjects.
PUBLIC HEALTH RELEVANCE: Our research aims to develop and characterize a means of rapidly detecting brain states relevant to addiction research through the use of magnetic resonance imaging and electroencephalography. We are interested specifically in states and markers of impulsivity and cigarette craving. Our goal ultimately is to have a tool that can be used in the context of neurofeedback, allowing human subject or patient to receive an indication of activity in their brains associated with these states and to enable them to learn to control these cognitive/affective states by controlling the brain activity.
描述(由申请人提供):实时功能磁共振成像(RT-fMRI)的神经反馈在成瘾研究和治疗中具有潜力,只有当给予受试者的反馈与必须控制的认知状态有意义地相关时,才能实现这一点。大脑的心理操作过于分散,无法用任何一个脑区或一小群脑区的原始RT-fMRI信号来表示。我们的目标是:1)使用计算机器学习来快速检测RT-fMRI信号中更好地表达认知状态的模式激活;2)使用同时收集的脑电(EEG)数据来增强这些数据;3)开发大脑数据图谱,以识别与成瘾和药物滥用研究相关的认知状态的大脑模式;以及4)使用这种RT-fMRI/EEG机器学习方法来探索RT-fMRI神经反馈。我们的方法将是首先创建模式匹配的快速算法,与成像相比,这些算法更快,从而允许“实时”应用。为此,我们将从图像中选择简明地表达状态之间差异的特征(更专业地说,我们将使用一种称为独立分量分析的方法来降低数据维度。)类似地,我们将通过研究脑电特征来研究它们在大脑中的来源位置,并通过检查它们包含的频率来浓缩它们。我们将在志愿者身上进行实验,以帮助我们了解他们做出冲动选择的倾向--众所周知,这与他们成为吸毒者的可能性有关,以及跟踪他们在控制欲望冲动时大脑的变化。在这些研究中,我们将关注重度吸烟者。吸烟本身就是一个严重的健康负担,从更广泛的角度来看,它也是上瘾的一个极好的模式,因为众所周知,它与使用其他滥用药物,如可卡因和甲基苯丙胺有许多共同的神经功能。这是一个阶段性的创新建议。第一阶段将集中于RT-fMRI分析和仪器技术的发展。在它成功完成后,根据具体的里程碑,我们将转移到与人类主体更实用的工作。
与公共健康相关:我们的研究旨在开发和表征一种通过使用磁共振成像和脑电图来快速检测与成瘾研究相关的大脑状态的方法。我们对冲动和吸烟的状态和标志特别感兴趣。我们的最终目标是拥有一种可以在神经反馈的背景下使用的工具,允许人类受试者或患者接收与这些状态相关的大脑活动的指示,并使他们能够通过控制大脑活动来学习控制这些认知/情感状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Steven Cohen其他文献
Mark Steven Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Steven Cohen', 18)}}的其他基金
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8485686 - 财政年份:2012
- 资助金额:
$ 59.34万 - 项目类别:
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8386518 - 财政年份:2012
- 资助金额:
$ 59.34万 - 项目类别:
NANOCARRIER BASED INTRALYMPHATIC IMAGING AND THERAPY FOR MELANOMA
基于纳米载体的淋巴内成像和黑色素瘤治疗
- 批准号:
7959404 - 财政年份:2009
- 资助金额:
$ 59.34万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8104246 - 财政年份:2008
- 资助金额:
$ 59.34万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7588944 - 财政年份:2008
- 资助金额:
$ 59.34万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7690912 - 财政年份:2008
- 资助金额:
$ 59.34万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8288263 - 财政年份:2008
- 资助金额:
$ 59.34万 - 项目类别:
FMRI OF INVERTED VISION: PLASTICITY OF VISUOSPATIAL MAPS
倒置视觉的 FMRI:视觉空间图的可塑性
- 批准号:
7606742 - 财政年份:2007
- 资助金额:
$ 59.34万 - 项目类别:
Comprehensive Training in Neuroimaging Fundamentals and Applications
神经影像学基础和应用综合培训
- 批准号:
8536780 - 财政年份:2006
- 资助金额:
$ 59.34万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 59.34万 - 项目类别:
Research Grant














{{item.name}}会员




