Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
基本信息
- 批准号:8288263
- 负责人:
- 金额:$ 56.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-25 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAddressAffectiveAlgorithmsAnteriorAtlasesBase of the BrainBehaviorBrainBrain regionCigaretteClassificationClinicalCocaineCognitiveComplexComputer-Assisted Image AnalysisComputing MethodologiesDataData AnalysesData CollectionData SetDatabasesDetectionDevelopmentDevicesDimensionsDiscriminationDrug abuseDrug userElectroencephalogramElectroencephalographyElectrophysiology (science)EpilepsyFeedbackFour-dimensionalFrequenciesFunctional Magnetic Resonance ImagingGalvanic Skin ResponseGenerationsGoalsHealthHealthcareImageImaging technologyImpulsivityInterventionLearningLocationMachine LearningMagnetic Resonance ImagingMapsMeasuresMedicalMethamphetamineMethodsModelingPatientsPatternPharmaceutical PreparationsPhasePhysiologicalProxyPsyche structureReporterReportingResearchRestRunningScalp structureSchizophreniaShort-Term MemorySignal TransductionSourceStimulusStudy SubjectTechnologyTestingTimeTraumatic Brain InjuryUnited States National Institutes of HealthWorkabstractingaddictionbaseblindchronic paincingulate cortexcognitive controlcravingdata spacedesigndiscountingdrug of abuseeffective interventionhuman subjectimprovedindependent component analysisinnovationinstrumentinstrumentationinterestmachine abstractingmethod developmentmind controlneurofeedbackneuroimagingnoveloperationprogramsrelating to nervous systemresearch studyresponsesymposiumtooltrendvirtualvolunteer
项目摘要
Project Summary/Abstract
Neurofeedback by real time functional MRI (rt-fMRI) has potential for addiction research
and treatment that will be realized only if the feedback given the subject is related
meaningfully to the cognitive states that must be controlled. The mental operations of the
brain are too distributed to be represented by the raw rt-fMRI signal in any one brain
region or small group of regions. Our aims are to: 1) Use computational machine learning
to rapidly detect patterned activation in the rt-fMRI signal that better expresses cognitive
state; 2) augment these data with concurrently-collected electroencephalographic (EEG)
data; 3) develop an atlas of brain data that identifies brain patterns with cognitive states
relevant to addiction and drug abuse research and 4) to explore rt-fMRI neurofeedback
using this rt-fMRI/EEG machine learning method.
Our approach will be to first create rapid algorithms for pattern matching that are fast
compared with the imaging, thereby allowing "real-time" application. To do so we will
select features from the images that express the differences among state concisely (more
technically, we will use a method known as independent components analysis to reduce
the data dimensionality.) We will similarly condense the EEG features by studying them
by the location of their sources within the brain, and by examining the frequencies that
they contain.
We will run experiments on volunteers designed to help us see their tendency to make
impulsive choices - which is known to relate to their likelihood to become drug users, as
well as experiments that track changes in their brain as they control their craving urges.
For these studies we will look at heavy cigarette users. Cigarette use on its own is a
serious health burden to the nation, and it is also an excellent model for addiction more
generally, as it is known to have many neural features in common with use of other drugs
of abuse, such as cocaine and methamphetamine.
This is a phased innovation proposal. The first phase will be focused on the developments
of the rt-fMRI analysis and instrumentation technology. On its successful completion,
based on specific milestones, we will move to the more applied work with human
subjects.
项目总结/摘要
真实的时间功能磁共振成像(rt-fMRI)神经反馈技术在成瘾研究中具有潜在的应用价值
只有当给予受试者的反馈是相关的,
有意义的认知状态,必须加以控制。大脑的运作
大脑分布太广,无法用任何一个大脑的原始rt-fMRI信号来表示
一个地区或一小群地区。我们的目标是:1)使用计算机器学习
快速检测rt-fMRI信号中的模式激活,
状态; 2)用同时收集的脑电图(EEG)增强这些数据
数据; 3)开发大脑数据图谱,识别具有认知状态的大脑模式
与成瘾和药物滥用研究相关; 4)探索rt-fMRI神经反馈
使用这种rt-fMRI/EEG机器学习方法。
我们的方法将是首先创建快速的模式匹配算法,
与成像相比,从而允许“实时”应用。为此,我们将
从图像中选择特征,简明地表达状态之间的差异(更多
从技术上讲,我们将使用一种称为独立成分分析的方法来减少
数据维度)。我们将通过研究它们来类似地浓缩EEG特征
通过它们在大脑中的来源位置,以及通过检查频率,
它们包含。
我们将对志愿者进行实验,以帮助我们了解他们的倾向,
冲动的选择-这是众所周知的,与他们成为吸毒者的可能性,
以及跟踪他们控制渴望冲动时大脑变化的实验。
在这些研究中,我们将研究重度吸烟者。吸烟本身就是一种
严重的健康负担的国家,它也是一个很好的模式,成瘾更多
一般来说,因为已知它与使用其他药物具有许多共同的神经特征,
滥用,如可卡因和甲基苯丙胺。
这是一个阶段性的创新方案。第一阶段将侧重于
实时功能磁共振成像分析和仪器技术。在其成功完成后,
根据具体的里程碑,我们将转向更多的应用工作,
科目
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neurophysiological signals of ignoring and attending are separable and related to performance during sustained intersensory attention.
忽略和关注的神经生理信号是可分离的,并且与持续的感官间注意力期间的表现相关。
- DOI:10.1162/jocn_a_00613
- 发表时间:2014
- 期刊:
- 影响因子:3.2
- 作者:Lenartowicz,Agatha;Simpson,GregoryV;Haber,CatherineM;Cohen,MarkS
- 通讯作者:Cohen,MarkS
Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial.
- DOI:10.3389/fnhum.2013.00520
- 发表时间:2013
- 期刊:
- 影响因子:2.9
- 作者:Anderson A;Cohen MS
- 通讯作者:Cohen MS
Perspective: causes and functional significance of temporal variations in attention control.
观点:注意力控制时间变化的原因和功能意义。
- DOI:10.3389/fnhum.2013.00381
- 发表时间:2013
- 期刊:
- 影响因子:2.9
- 作者:Lenartowicz,Agatha;Simpson,GregoryV;Cohen,MarkS
- 通讯作者:Cohen,MarkS
Measurement of Neurophysiological Signals of Ignoring and Attending Processes in Attention Control.
- DOI:10.3791/52958
- 发表时间:2015-07
- 期刊:
- 影响因子:0
- 作者:A. Lenartowicz;G. V. Simpson;S. R. O'connell;Mark S. Cohen
- 通讯作者:A. Lenartowicz;G. V. Simpson;S. R. O'connell;Mark S. Cohen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Steven Cohen其他文献
Mark Steven Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Steven Cohen', 18)}}的其他基金
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8485686 - 财政年份:2012
- 资助金额:
$ 56.68万 - 项目类别:
Understanding attention-control across functional systems and temporal scales
了解跨功能系统和时间尺度的注意力控制
- 批准号:
8386518 - 财政年份:2012
- 资助金额:
$ 56.68万 - 项目类别:
NANOCARRIER BASED INTRALYMPHATIC IMAGING AND THERAPY FOR MELANOMA
基于纳米载体的淋巴内成像和黑色素瘤治疗
- 批准号:
7959404 - 财政年份:2009
- 资助金额:
$ 56.68万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8087592 - 财政年份:2008
- 资助金额:
$ 56.68万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
8104246 - 财政年份:2008
- 资助金额:
$ 56.68万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7588944 - 财政年份:2008
- 资助金额:
$ 56.68万 - 项目类别:
Real-Time Automated Detection of Craving States with fMRI and EEG
利用功能磁共振成像和脑电图实时自动检测渴望状态
- 批准号:
7690912 - 财政年份:2008
- 资助金额:
$ 56.68万 - 项目类别:
FMRI OF INVERTED VISION: PLASTICITY OF VISUOSPATIAL MAPS
倒置视觉的 FMRI:视觉空间图的可塑性
- 批准号:
7606742 - 财政年份:2007
- 资助金额:
$ 56.68万 - 项目类别:
Comprehensive training in Neuroimaging Fundamentals and Applications
神经影像学基础和应用综合培训
- 批准号:
7488879 - 财政年份:2006
- 资助金额:
$ 56.68万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Research Grant














{{item.name}}会员




