Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
基本信息
- 批准号:8373375
- 负责人:
- 金额:$ 44.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnalytical ChemistryApplications GrantsAreaBioinformaticsBiologicalCellsChemicalsCollaborationsCommunitiesComplexComputational TechniqueComputer softwareComputing MethodologiesCoupledCustomDataData SetDevelopmentDisciplineFundingGasesGoalsIndianaIonsLabelLearningLiquid ChromatographyMachine LearningMass Spectrum AnalysisMeasuresMethodologyMethodsModelingOccupationsPeptide LibraryPeptidesPhasePlayPopulationPost-Translational Modification SitePost-Translational Protein ProcessingProceduresProcessProteinsProteomicsRelative (related person)ReproducibilityResearch ActivityResearch PersonnelRoleSamplingScientistSiteSpectrometryStagingSynthesis ChemistrySynthetic Peptide LibrariesTechniquesTissuesTrainingUniversitiesWorkbasecrosslinkexperienceimprovedinstrumentinstrumentationion mobilitymodel developmentnovelprogramsprotein protein interactionresearch studyresponsesoundtandem mass spectrometry
项目摘要
(Not modified)
Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) is a widely used platform for
high-throughput identification and quantification of proteins in biological samples. In addition to experimental
steps in the pipeline, computational and statistical procedures play important roles in determining the content
of the mixture. However, even with the best analytical platforms and modern software, only a small fraction of
spectra are typically identified, thus directly impacting the quality of the biological sample analysis. If high-
throughput proteomics techniques are to become routinely used in biomedical applications on the population
scale, it is critical to address analytical and computational factors that contribute to the inadequate identification
coverage and sensitivity.
Over the past several years, we and others have spent a significant amount of research activity to understand
and model analytical platforms and subsequently improve computational methods for the analyses of complex
biological mixtures. While our original grant application has resulted in methods and programs already
accepted by the community, there is a need and significant room for further key contributions. We see many of
these contributions being related to the analyses of dynamic changes in cells and tissues, and involving
changes in protein quantities, protein post-translational modifications (PTMs) and transient protein-protein
interactions. Mass spectrometry-based proteomics provides an excellent platform to address each of these
challenges. Thus, we plan to continue to develop novel methods for label-free quantification and remain close
to our core strengths, but also strongly focus on PTMs and protein-protein interactions as new directions of this
renewal application.
This application includes a considerably closer collaboration between computational (Dr. Radivojac, Dr. Tang)
and experimental (Dr. Arnold, Dr. Clemmer, Dr. Reilly) scientists than did our original application. The
investigators bring complementary expertise and experience in a range of disciplines involving protein
bioinformatics, algorithms, machine learning, as well as analytical chemistry and instrumentation. Overall, we
believe that this proposal will result in significant advances for mass spectrometry-based proteomics.
(未修改)
液相色谱(LC)与串联质谱仪(MS/MS)联用是一种广泛使用的分析平台
生物样品中蛋白质的高通量鉴定和定量。除了试验性的
正在筹备中的步骤、计算和统计程序在确定内容方面发挥着重要作用
混合物的一部分。然而,即使拥有最好的分析平台和现代软件,也只有一小部分
光谱通常被识别,因此直接影响生物样品分析的质量。如果高的话-
吞吐量蛋白质组学技术将在人群生物医学应用中成为常规应用
在规模方面,关键是要解决导致识别不充分的分析和计算因素
覆盖面和敏感性。
在过去的几年里,我们和其他人花费了大量的研究活动来理解
并为分析平台建模,并随后改进复杂结构分析的计算方法
生物混合物。虽然我们最初的拨款申请已经导致了方法和计划
为社会所接受,我们有需要作出更大的贡献,也有很大的空间。我们看到了许多
这些贡献与分析细胞和组织的动态变化有关,并涉及
蛋白质数量、蛋白质翻译后修饰(PTM)和瞬时蛋白质-蛋白质的变化
互动。基于质谱学的蛋白质组学提供了一个很好的平台来解决这些问题
挑战。因此,我们计划继续开发新的无标记量化方法,并保持密切联系
除了我们的核心优势外,还将PTMS和蛋白质相互作用作为新的研究方向
续签申请。
此应用程序包括计算(Radivojac博士、唐博士)之间相当密切的协作
和实验科学家(Arnold博士、Clemmer博士、Reilly博士)比我们最初的应用程序做得更好。这个
研究人员带来了与蛋白质相关的一系列学科的互补专业知识和经验
生物信息学、算法、机器学习以及分析化学和仪器仪表。总体而言,我们
相信这项建议将导致基于质谱学的蛋白质组学的重大进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Predrag Radivojac其他文献
Predrag Radivojac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Predrag Radivojac', 18)}}的其他基金
Supporting IGVF by modeling genetics, function, and phenotype with machine learning
通过机器学习对遗传学、功能和表型进行建模来支持 IGVF
- 批准号:
10630218 - 财政年份:2021
- 资助金额:
$ 44.85万 - 项目类别:
Supporting IGVF by modeling genetics, function, and phenotype with machine learning
通过机器学习对遗传学、功能和表型进行建模来支持 IGVF
- 批准号:
10480924 - 财政年份:2021
- 资助金额:
$ 44.85万 - 项目类别:
Supporting IGVF by modeling genetics, function, and phenotype with machine learning
通过机器学习对遗传学、功能和表型进行建模来支持 IGVF
- 批准号:
10297060 - 财政年份:2021
- 资助金额:
$ 44.85万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
7387128 - 财政年份:2008
- 资助金额:
$ 44.85万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
7683963 - 财政年份:2008
- 资助金额:
$ 44.85万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
8549841 - 财政年份:2007
- 资助金额:
$ 44.85万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
8728956 - 财政年份:2007
- 资助金额:
$ 44.85万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
8902210 - 财政年份:2007
- 资助金额:
$ 44.85万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant