Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
基本信息
- 批准号:8728956
- 负责人:
- 金额:$ 41.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic SoftwareAlgorithmsAnalytical ChemistryApplications GrantsAreaBioinformaticsBiologicalCellsChemicalsCollaborationsCommunitiesComplexComputational TechniqueComputer softwareComputing MethodologiesCoupledCustomDataData SetDevelopmentDisciplineFundingGasesGoalsIndianaIonsLabelLearningLiquid ChromatographyMachine LearningMass Spectrum AnalysisMeasuresMethodologyMethodsModelingOccupationsPeptide LibraryPeptidesPhasePlayPopulationPost-Translational Modification SitePost-Translational Protein ProcessingProceduresProcessProteinsProteomicsRelative (related person)ReproducibilityResearch ActivityResearch PersonnelRoleSamplingScientistSiteSpectrometryStagingSynthesis ChemistrySynthetic Peptide LibrariesTechniquesTissuesTrainingUniversitiesWorkbasecrosslinkexperienceimprovedinstrumentinstrumentationion mobilitymodel developmentnovelprogramsprotein protein interactionresearch studyresponsesoundtandem mass spectrometry
项目摘要
(Not modified)
Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) is a widely used platform for
high-throughput identification and quantification of proteins in biological samples. In addition to experimental
steps in the pipeline, computational and statistical procedures play important roles in determining the content
of the mixture. However, even with the best analytical platforms and modern software, only a small fraction of
spectra are typically identified, thus directly impacting the quality of the biological sample analysis. If high-
throughput proteomics techniques are to become routinely used in biomedical applications on the population
scale, it is critical to address analytical and computational factors that contribute to the inadequate identification
coverage and sensitivity.
Over the past several years, we and others have spent a significant amount of research activity to understand
and model analytical platforms and subsequently improve computational methods for the analyses of complex
biological mixtures. While our original grant application has resulted in methods and programs already
accepted by the community, there is a need and significant room for further key contributions. We see many of
these contributions being related to the analyses of dynamic changes in cells and tissues, and involving
changes in protein quantities, protein post-translational modifications (PTMs) and transient protein-protein
interactions. Mass spectrometry-based proteomics provides an excellent platform to address each of these
challenges. Thus, we plan to continue to develop novel methods for label-free quantification and remain close
to our core strengths, but also strongly focus on PTMs and protein-protein interactions as new directions of this
renewal application.
This application includes a considerably closer collaboration between computational (Dr. Radivojac, Dr. Tang)
and experimental (Dr. Arnold, Dr. Clemmer, Dr. Reilly) scientists than did our original application. The
investigators bring complementary expertise and experience in a range of disciplines involving protein
bioinformatics, algorithms, machine learning, as well as analytical chemistry and instrumentation. Overall, we
believe that this proposal will result in significant advances for mass spectrometry-based proteomics.
(不修改)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Predrag Radivojac其他文献
Predrag Radivojac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Predrag Radivojac', 18)}}的其他基金
Supporting IGVF by modeling genetics, function, and phenotype with machine learning
通过机器学习对遗传学、功能和表型进行建模来支持 IGVF
- 批准号:
10630218 - 财政年份:2021
- 资助金额:
$ 41.13万 - 项目类别:
Supporting IGVF by modeling genetics, function, and phenotype with machine learning
通过机器学习对遗传学、功能和表型进行建模来支持 IGVF
- 批准号:
10480924 - 财政年份:2021
- 资助金额:
$ 41.13万 - 项目类别:
Supporting IGVF by modeling genetics, function, and phenotype with machine learning
通过机器学习对遗传学、功能和表型进行建模来支持 IGVF
- 批准号:
10297060 - 财政年份:2021
- 资助金额:
$ 41.13万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
7387128 - 财政年份:2008
- 资助金额:
$ 41.13万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
7683963 - 财政年份:2008
- 资助金额:
$ 41.13万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
8549841 - 财政年份:2007
- 资助金额:
$ 41.13万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
8373375 - 财政年份:2007
- 资助金额:
$ 41.13万 - 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
- 批准号:
8902210 - 财政年份:2007
- 资助金额:
$ 41.13万 - 项目类别:
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 41.13万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant