Supporting IGVF by modeling genetics, function, and phenotype with machine learning

通过机器学习对遗传学、功能和表型进行建模来支持 IGVF

基本信息

  • 批准号:
    10297060
  • 负责人:
  • 金额:
    $ 35.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Leveraging the power of the human genome to understand the risks, causes, and treatments of human dis- ease remains a grand challenge for all of biology and medicine. While sequencing costs have plummeted, and clinical implementation has become commonplace, interpreting human genomes remains a highly challenging task. It is our hypothesis that understanding the function of the genome and its products at a molecular, tissue, and phenotypic level using advanced machine learning will help unlock the door to better interpretation for sci- entific discovery and better clinical outcomes based on genomic medicine. To that end, our team has spent the past two decades working to develop computational models of biology, to predict how those models are perturbed through changes in the genome, and to use those perturbations to model phenotype and disease. We have had many research outputs in this area, having developed and published a number of widely used methods that predict biochemical and phenotypic changes caused by genetic variants to infer phenotype and pathogenicity. However, we believe that there is a coming convergence between the variability in clinical inter- pretation, high-throughput biotechnology assays, and modern machine learning methodology that will result in more accurate clinical assessments and improved clinical care. Therefore, in this ambitious proposal, we are addressing important questions in variant and genome interpretation consistent with this view and the mission of the IGVF Consortium. Our major goals include (1) developing advanced semi-supervised approaches to predict variants that disrupt molecular function and/or are capable of altering phenotypes; (2) identifying in- formative assays, variants, and genes to automate experimental design with an emphasis on resource alloca- tion and reduction of ascertainment bias in the Consortium; and (3) developing machine learning approaches to integrate these models into a workflow of the IGVF Consortium and enable the interaction between compu- tation and experiment in order to catalyze advances in both genetic variant interpretation and predictive model development.
项目摘要 利用人类基因组的力量来了解人类疾病的风险、原因和治疗方法, 对所有生物学和医学来说,轻松仍然是一个巨大的挑战。虽然测序成本大幅下降, 临床实施已经变得司空见惯,但解释人类基因组仍然是一个高度挑战性的问题。 任务我们的假设是,了解基因组及其产物在分子,组织, 和表型水平使用先进的机器学习将有助于打开大门,以更好地解释科学, 基于基因组医学的有效发现和更好的临床结果。为此,我们的团队花费了 在过去的二十年里,我们一直致力于开发生物学的计算模型, 通过基因组的变化而受到干扰,并使用这些干扰来模拟表型和疾病。 我们在这一领域有许多研究成果,开发并出版了一些广泛使用的 预测由遗传变异引起的生物化学和表型变化以推断表型的方法, 致病性然而,我们认为,在临床间的变异性之间有一个即将到来的收敛, 预处理,高通量生物技术测定和现代机器学习方法,将导致 更准确的临床评估和更好的临床护理。因此,在这一雄心勃勃的建议中,我们 解决变异和基因组解释中的重要问题与这一观点和使命一致 IGVF联盟的成员我们的主要目标包括(1)开发先进的半监督方法, 预测破坏分子功能和/或能够改变表型的变体;(2)识别- 形成分析,变异和基因,以自动化实验设计,重点是资源分配, 联盟中确定偏差的消除和减少;(3)开发机器学习方法 将这些模型集成到IGVF联盟的工作流程中,并使计算机之间能够进行交互, 为了促进遗传变异解释和预测模型的进步, 发展

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Predrag Radivojac其他文献

Predrag Radivojac的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Predrag Radivojac', 18)}}的其他基金

Supporting IGVF by modeling genetics, function, and phenotype with machine learning
通过机器学习对遗传学、功能和表型进行建模来支持 IGVF
  • 批准号:
    10630218
  • 财政年份:
    2021
  • 资助金额:
    $ 35.63万
  • 项目类别:
Supporting IGVF by modeling genetics, function, and phenotype with machine learning
通过机器学习对遗传学、功能和表型进行建模来支持 IGVF
  • 批准号:
    10480924
  • 财政年份:
    2021
  • 资助金额:
    $ 35.63万
  • 项目类别:
Automated Function Prediction (AFP 2014)
自动功能预测 (AFP 2014)
  • 批准号:
    8720395
  • 财政年份:
    2014
  • 资助金额:
    $ 35.63万
  • 项目类别:
Automated Function Prediction (AFP 2011)
自动功能预测 (AFP 2011)
  • 批准号:
    8130074
  • 财政年份:
    2011
  • 资助金额:
    $ 35.63万
  • 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
  • 批准号:
    7387128
  • 财政年份:
    2008
  • 资助金额:
    $ 35.63万
  • 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
  • 批准号:
    7683963
  • 财政年份:
    2008
  • 资助金额:
    $ 35.63万
  • 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
  • 批准号:
    8549841
  • 财政年份:
    2007
  • 资助金额:
    $ 35.63万
  • 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
  • 批准号:
    8373375
  • 财政年份:
    2007
  • 资助金额:
    $ 35.63万
  • 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
  • 批准号:
    8728956
  • 财政年份:
    2007
  • 资助金额:
    $ 35.63万
  • 项目类别:
Computational approaches to protein identification and quantification using MS/MS
使用 MS/MS 进行蛋白质鉴定和定量的计算方法
  • 批准号:
    8902210
  • 财政年份:
    2007
  • 资助金额:
    $ 35.63万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.63万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了