Cytoskeletal Oscillations: Mathematical Modeling Integrated with Experiments
细胞骨架振荡:数学建模与实验相结合
基本信息
- 批准号:8319037
- 负责人:
- 金额:$ 42.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAdvanced DevelopmentBehaviorBindingBiochemicalBiochemistryBiological ProcessBiomechanicsBiosensorCell Differentiation processCell ShapeCell divisionCell membraneCell physiologyCellsCellular MorphologyCellular biologyChemicalsComputer AnalysisComputer SimulationCouplingCuesCytokinesisCytoplasmCytoskeletonCytosolDataDiseaseDisseminated Malignant NeoplasmEnsureEnvironmentEventFeedbackGTPase-Activating ProteinsGlobal ChangeGoalsGrowth FactorGuanine Nucleotide Exchange FactorsHormonesImageImage AnalysisInvestigationLeadLifeLipidsLocomotionMalignant NeoplasmsMeasurementMeasuresMechanicsMembraneMethodsMicroscopyMicrotubule DepolymerizationModelingMolecularMolecular ProbesMonomeric GTP-Binding ProteinsMorphologyMotionMyosin ATPasePharmaceutical PreparationsPhenotypePhosphatidylinositol 4,5-DiphosphatePlayProcessProductionPropertyProteinsReagentRecording of previous eventsRecruitment ActivityRegulationResolutionRoleShapesSignal TransductionSignaling MoleculeStimulusSystemTechniquesTestingTimeTravelUrsidae FamilyWorkbasecomputerized toolsdesigngenetic regulatory proteinimage processingimage reconstructioninsightmathematical modelmigrationnovelnovel therapeuticsparticleprotein functionprototyperesearch studyresponsespatiotemporaltheoriestool
项目摘要
DESCRIPTION (provided by applicant):
Summary An important property of all cells is their ability to sense and respond to their environment. Often the appropriate response involves large scale changes in cell morphology. For example environmental cues, such as hormones or growth factors, can lead to cell differentiation, proliferation, or migration. These global changes in cell shape are highly coordinated and require dynamic regulation of the actin cytoskeleton. Therefore understanding how the actin cytoskeleton and associated regulatory proteins function as an integrated system is a central challenge for cell biology. The self-emergent properties of the cytoskeleton can only be understood with the aid of mathematical modeling and computational simulations. Using the interplay of theory and experiment, this project seeks to gain a mechanistic understanding of the oscillations in cell morphology that occur during cell rounding. We envision that as well as providing insight into a dynamic cytoskeletal system, this approach will provide insight into other
fundamental biological processes, such as cell division and amoeboid migration. Moreover, because many disorders, including cancer, involve a dysregulation of the cytoskeleton, a mechanistic understanding of this system may lead to novel therapeutic strategies for treating disease. The overarching goals of this project are: 1) to understand how the actin cytoskeleton self-organizes to generate sustained oscillations in cell shape and 2) to develop mathematical models that predict the consequences of chemical and mechanical perturbations on the oscillatory behavior. The initial models will be developed to test our hypothesis that oscillations
occur as a result of a traveling wave of RhoA activity. The wave front is propagated by a positive feedback loop involving the recruitment of guanine nucleotide exchange factors (GEFs), which accelerate activation of RhoA. A slow negative feedback loop involving GTPase activating proteins (GAPs), which deactivate RhoA, ensures RhoA activity remains localized as the wave travels. To test this hypothesis we have developed three aims that integrate experimental investigations with computational analysis and mathematical modeling. In Aim I single cell experiments are performed to characterize the dynamic structural and mechanochemical properties of oscillating cells and test model predictions. Proper utilization and interpretation o the data generated in Aim 1 requires the use of computational approaches. The development of advanced image processing tools is the focus of Aim 2. In Aim 3 multiphase models that spatially and temporally resolve chemical species, cell membranes, the cortex and cytosol are developed and tested through direct comparisons with the experimental results of Aim 1.
PUBLIC HEALTH RELEVANCE:
Narrative The ability of cells to dynamically modify their morphology underlies many cellular processes, such as differentiation and migration. The changes in cell shape that occur during these events require tight biochemical regulation of the cytoskeleton. Because many disorders, including cancer, involve a dysregulation of the cytoskeleton, a mechanistic understanding of experimentally controlled, sustained cell oscillations may lead to novel therapeutic strategies for
treating disease.
描述(由申请人提供):
所有细胞的一个重要特性是它们感知和响应环境的能力。通常,适当的反应涉及细胞形态的大规模变化。例如,环境因素,如激素或生长因子,可导致细胞分化、增殖或迁移。细胞形状的这些全局变化是高度协调的,需要肌动蛋白细胞骨架的动态调节。因此,了解肌动蛋白细胞骨架和相关的调节蛋白如何作为一个完整的系统发挥作用是细胞生物学的一个核心挑战。细胞骨架的自发性质只能借助于数学建模和计算机模拟来理解。利用理论和实验的相互作用,该项目旨在获得细胞圆化过程中发生的细胞形态振荡的机械理解。我们设想,以及提供洞察动态细胞骨架系统,这种方法将提供洞察其他
基本的生物过程,如细胞分裂和变形虫迁移。此外,由于许多疾病,包括癌症,涉及细胞骨架的失调,对该系统的机械理解可能会导致治疗疾病的新的治疗策略。该项目的总体目标是:1)了解肌动蛋白细胞骨架如何自组织以产生细胞形状的持续振荡; 2)开发数学模型,预测化学和机械扰动对振荡行为的影响。最初的模型将被开发来测试我们的假设,振荡
这是RhoA活性行波的结果。波前通过涉及鸟嘌呤核苷酸交换因子(GEF)的募集的正反馈回路传播,所述鸟嘌呤核苷酸交换因子(GEF)加速RhoA的激活。一个缓慢的负反馈回路,涉及GTdR激活蛋白(GAP),使RhoA失活,确保RhoA活性保持局部的波传播。为了验证这一假设,我们开发了三个目标,将实验研究与计算分析和数学建模相结合。在目的I单细胞实验进行表征振荡细胞和测试模型预测的动态结构和机械化学性质。正确利用和解释目标1中产生的数据需要使用计算方法。目标2的重点是开发先进的图像处理工具。在目标3多相模型,空间和时间上解决化学物种,细胞膜,皮层和胞质溶胶的开发和测试,通过直接比较与目标1的实验结果。
公共卫生相关性:
细胞动态改变其形态的能力是许多细胞过程的基础,如分化和迁移。在这些事件中发生的细胞形状的变化需要细胞骨架的严格的生化调节。因为许多疾病,包括癌症,涉及细胞骨架的失调,对实验控制的持续细胞振荡的机制理解可能导致新的治疗策略,
治疗疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy C Elston其他文献
Timothy C Elston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy C Elston', 18)}}的其他基金
Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
- 批准号:
10641034 - 财政年份:2021
- 资助金额:
$ 42.53万 - 项目类别:
Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
- 批准号:
10090190 - 财政年份:2021
- 资助金额:
$ 42.53万 - 项目类别:
Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
- 批准号:
10436773 - 财政年份:2021
- 资助金额:
$ 42.53万 - 项目类别:
Predictive Modeling of the EGFR-MAPK pathway for Triple Negative Breast Cancer Patients
三阴性乳腺癌患者 EGFR-MAPK 通路的预测模型
- 批准号:
10402248 - 财政年份:2019
- 资助金额:
$ 42.53万 - 项目类别:
Predictive Modeling of the EGFR-MAPK pathway for Triple Negative Breast Cancer Patients
三阴性乳腺癌患者 EGFR-MAPK 通路的预测模型
- 批准号:
10612033 - 财政年份:2019
- 资助金额:
$ 42.53万 - 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
- 批准号:
10179426 - 财政年份:2018
- 资助金额:
$ 42.53万 - 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
- 批准号:
10623845 - 财政年份:2018
- 资助金额:
$ 42.53万 - 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
- 批准号:
10443561 - 财政年份:2018
- 资助金额:
$ 42.53万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 42.53万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 42.53万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 42.53万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 42.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 42.53万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 42.53万 - 项目类别:
Postdoctoral Fellowships