Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
基本信息
- 批准号:10436773
- 负责人:
- 金额:$ 26.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computational approaches based on statistical, mathematical and machine-learning principles are now
permeating all areas of biological and biomedical research. Driving this explosion in biological computation are
new high-throughput techniques in genomics, proteomics, metabolomics and chemoinformatics, and advances
in modern imaging. Each of these fields generates complex data sets that require computational approaches to
analyze and interpret. Also driving the use of computing in biomedical research is the increasing availability of
high-performance computing, including graphical processing units (GPUs), that make deep learning and other
artificial intelligence approaches computationally feasible. As a result, there is an increasing demand for
biomedical researchers with expertise in scientific computing and data analytics and trained in statistical and
mathematical modeling. To address this need, in 2007 the University of North Carolina at Chapel Hill established
the Ph.D. Curriculum in Bioinformatics and Computational Biology (BCB).
The mission of the BCB curriculum is to train the next generation of scientists with the computational and
quantitative skills required to make important contributions to modern biological and biomedical research. To
accomplish this goal, not only requires students receive training in computational, mathematical and statistical
approaches, but also that they become sufficiently versed in biology and acquire skills required for
multidisciplinary team science. The BCB curriculum also strives to provide students with the professional skills
required to successfully transition into careers in the biomedical workforce. The specific objects of the BCB
curriculum are to: 1) provide broad knowledge of bioinformatics and computational biology approaches and the
computational, statistical and mathematical foundations on which they are built, 2) provide in depth training in a
chosen area of bioinformatics and computational biology, 3) train students to participate in collaborative and
interdisciplinary research, 4) train students to develop independent research programs and identify new research
directions, 5) develop skills in oral and written communication, 6) provide students with professional training
opportunities for careers outside of academics and 7) provide students with training in the Responsible Conduct
of Research, and in Rigor and Reproducibility.
The proposed T32 training program will support 6 BCB students during their second year of graduate
training. In addition to providing didactic training and scientific research opportunities, the BCB curriculum
provides professional training opportunities by sponsoring events such as “lunch and learn” sessions with
representatives from the pharmaceutical and biotechnology sectors and “hackathons” with the National Center
for Biotechnology Information. The University of North Carolina and BCB curriculum are committed to providing
a supportive environment for students from all backgrounds and providing them with the training needed to
successfully transitions to biomedical research careers in academic, governmental and corporate settings.
基于统计、数学和机器学习原理的计算方法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy C Elston其他文献
Timothy C Elston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy C Elston', 18)}}的其他基金
Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
- 批准号:
10641034 - 财政年份:2021
- 资助金额:
$ 26.02万 - 项目类别:
Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
- 批准号:
10090190 - 财政年份:2021
- 资助金额:
$ 26.02万 - 项目类别:
Predictive Modeling of the EGFR-MAPK pathway for Triple Negative Breast Cancer Patients
三阴性乳腺癌患者 EGFR-MAPK 通路的预测模型
- 批准号:
10402248 - 财政年份:2019
- 资助金额:
$ 26.02万 - 项目类别:
Predictive Modeling of the EGFR-MAPK pathway for Triple Negative Breast Cancer Patients
三阴性乳腺癌患者 EGFR-MAPK 通路的预测模型
- 批准号:
10612033 - 财政年份:2019
- 资助金额:
$ 26.02万 - 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
- 批准号:
10179426 - 财政年份:2018
- 资助金额:
$ 26.02万 - 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
- 批准号:
10623845 - 财政年份:2018
- 资助金额:
$ 26.02万 - 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
- 批准号:
10443561 - 财政年份:2018
- 资助金额:
$ 26.02万 - 项目类别:
相似海外基金
REU Site: Genomics and Computational biology
REU 网站:基因组学和计算生物学
- 批准号:
2243206 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
Standard Grant
FTMA4 - Computational Biology to facilitate analysis and modulation of the function of intrinsically disordered regions in proteins
FTMA4 - 计算生物学,促进蛋白质本质无序区域功能的分析和调节
- 批准号:
BB/X01763X/1 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
Training Grant
Predoctoral Training in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训
- 批准号:
10715126 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
UCLA Pediatric Research Education Program in Bioinformatics, Computational Biology, and Omics
加州大学洛杉矶分校生物信息学、计算生物学和组学儿科研究教育项目
- 批准号:
10629061 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
Continuing Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
- 批准号:
2320846 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
Standard Grant
Core A: Biostatistics and Computational Biology Core
核心A:生物统计学和计算生物学核心
- 批准号:
10554475 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
Development of Innovative Fat Transplantation Based on Single Cell Analysis and Computational Biology of Subcutaneous Adipose Tissue-Derived Cells
基于皮下脂肪组织来源细胞的单细胞分析和计算生物学的创新脂肪移植的发展
- 批准号:
22H03246 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
REU Site: Interdisciplinary Computational Biology (iCompBio)
REU 网站:跨学科计算生物学 (iCompBio)
- 批准号:
2149956 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Standard Grant
CSR: Medium: Approximate Membership Query Data Structures in Computational Biology and Storage
CSR:中:计算生物学和存储中的近似成员资格查询数据结构
- 批准号:
2317838 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Continuing Grant














{{item.name}}会员




