Predoctoral Training Program in Bioinformatics and Computational Biology

生物信息学和计算生物学博士前培训项目

基本信息

  • 批准号:
    10436773
  • 负责人:
  • 金额:
    $ 26.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Computational approaches based on statistical, mathematical and machine-learning principles are now permeating all areas of biological and biomedical research. Driving this explosion in biological computation are new high-throughput techniques in genomics, proteomics, metabolomics and chemoinformatics, and advances in modern imaging. Each of these fields generates complex data sets that require computational approaches to analyze and interpret. Also driving the use of computing in biomedical research is the increasing availability of high-performance computing, including graphical processing units (GPUs), that make deep learning and other artificial intelligence approaches computationally feasible. As a result, there is an increasing demand for biomedical researchers with expertise in scientific computing and data analytics and trained in statistical and mathematical modeling. To address this need, in 2007 the University of North Carolina at Chapel Hill established the Ph.D. Curriculum in Bioinformatics and Computational Biology (BCB). The mission of the BCB curriculum is to train the next generation of scientists with the computational and quantitative skills required to make important contributions to modern biological and biomedical research. To accomplish this goal, not only requires students receive training in computational, mathematical and statistical approaches, but also that they become sufficiently versed in biology and acquire skills required for multidisciplinary team science. The BCB curriculum also strives to provide students with the professional skills required to successfully transition into careers in the biomedical workforce. The specific objects of the BCB curriculum are to: 1) provide broad knowledge of bioinformatics and computational biology approaches and the computational, statistical and mathematical foundations on which they are built, 2) provide in depth training in a chosen area of bioinformatics and computational biology, 3) train students to participate in collaborative and interdisciplinary research, 4) train students to develop independent research programs and identify new research directions, 5) develop skills in oral and written communication, 6) provide students with professional training opportunities for careers outside of academics and 7) provide students with training in the Responsible Conduct of Research, and in Rigor and Reproducibility. The proposed T32 training program will support 6 BCB students during their second year of graduate training. In addition to providing didactic training and scientific research opportunities, the BCB curriculum provides professional training opportunities by sponsoring events such as “lunch and learn” sessions with representatives from the pharmaceutical and biotechnology sectors and “hackathons” with the National Center for Biotechnology Information. The University of North Carolina and BCB curriculum are committed to providing a supportive environment for students from all backgrounds and providing them with the training needed to successfully transitions to biomedical research careers in academic, governmental and corporate settings.
基于统计、数学和机器学习原理的计算方法现在 渗透到生物和生物医学研究的各个领域。推动生物计算爆炸的是 基因组学、蛋白质组学、代谢组学和化学信息学领域的新高通量技术及其进展 在现代影像学中。每个领域都会生成复杂的数据集,需要计算方法来 分析和解释。推动计算在生物医学研究中使用的另一个因素是 高性能计算,包括图形处理单元 (GPU),使深度学习和其他 人工智能在计算上变得可行。因此,对 具有科学计算和数据分析专业知识并接受过统计和统计培训的生物医学研究人员 数学建模。为了满足这一需求,北卡罗来纳大学教堂山分校于 2007 年建立了 博士学位生物信息学和计算生物学(BCB)课程。 BCB 课程的使命是培养具有计算和计算能力的下一代科学家 对现代生物和生物医学研究做出重要贡献所需的定量技能。到 要实现这一目标,不仅需要学生接受计算、数学和统计方面的培训 方法,而且还要求他们充分精通生物学并获得所需的技能 多学科团队科学。 BCB课程还致力于为学生提供专业技能 成功过渡到生物医学劳动力职业所需的条件。 BCB的具体目标 课程目标是:1)提供生物信息学和计算生物学方法的广泛知识以及 它们建立在计算、统计和数学基础上,2) 提供深入的培训 选择生物信息学和计算生物学领域,3)培养学生参与协作和 跨学科研究,4)培养学生开发独立研究项目并发现新研究 方向,5)培养口头和书面沟通技能,6)为学生提供专业培训 学术之外的职业机会,7) 为学生提供负责任行为方面的培训 研究的严谨性和可重复性。 拟议的 T32 培训计划将在研究生第二年为 6 名 BCB 学生提供支持 训练。除了提供教学培训和科学研究机会外,BCB 课程 通过赞助“午餐和学习”课程等活动,提供专业培训机会 来自制药和生物技术领域的代表以及与国家中心的“黑客马拉松” 生物技术信息。北卡罗来纳大学和 BCB 课程致力于提供 为来自不同背景的学生提供支持性环境,并为他们提供所需的培训 成功过渡到学术、政府和企业环境中的生物医学研究职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy C Elston其他文献

Timothy C Elston的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy C Elston', 18)}}的其他基金

Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
  • 批准号:
    10641034
  • 财政年份:
    2021
  • 资助金额:
    $ 26.02万
  • 项目类别:
Predoctoral Training Program in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训项目
  • 批准号:
    10090190
  • 财政年份:
    2021
  • 资助金额:
    $ 26.02万
  • 项目类别:
Predictive Modeling of the EGFR-MAPK pathway for Triple Negative Breast Cancer Patients
三阴性乳腺癌患者 EGFR-MAPK 通路的预测模型
  • 批准号:
    10402248
  • 财政年份:
    2019
  • 资助金额:
    $ 26.02万
  • 项目类别:
Predictive Modeling of the EGFR-MAPK pathway for Triple Negative Breast Cancer Patients
三阴性乳腺癌患者 EGFR-MAPK 通路的预测模型
  • 批准号:
    10612033
  • 财政年份:
    2019
  • 资助金额:
    $ 26.02万
  • 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
  • 批准号:
    10179426
  • 财政年份:
    2018
  • 资助金额:
    $ 26.02万
  • 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
  • 批准号:
    10623845
  • 财政年份:
    2018
  • 资助金额:
    $ 26.02万
  • 项目类别:
Mathematical modeling of cellular signaling systems
细胞信号系统的数学建模
  • 批准号:
    10443561
  • 财政年份:
    2018
  • 资助金额:
    $ 26.02万
  • 项目类别:
Gradient Tracking and Chemotropism
梯度跟踪和趋化性
  • 批准号:
    8835120
  • 财政年份:
    2013
  • 资助金额:
    $ 26.02万
  • 项目类别:
Gradient Tracking and Chemotropism
梯度跟踪和趋化性
  • 批准号:
    8656373
  • 财政年份:
    2013
  • 资助金额:
    $ 26.02万
  • 项目类别:
Gradient Tracking and Chemotropism
梯度跟踪和趋化性
  • 批准号:
    8416919
  • 财政年份:
    2013
  • 资助金额:
    $ 26.02万
  • 项目类别:

相似海外基金

REU Site: Genomics and Computational biology
REU 网站:基因组学和计算生物学
  • 批准号:
    2243206
  • 财政年份:
    2023
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Standard Grant
FTMA4 - Computational Biology to facilitate analysis and modulation of the function of intrinsically disordered regions in proteins
FTMA4 - 计算生物学,促进蛋白质本质无序区域功能的分析和调节
  • 批准号:
    BB/X01763X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Training Grant
Predoctoral Training in Bioinformatics and Computational Biology
生物信息学和计算生物学博士前培训
  • 批准号:
    10715126
  • 财政年份:
    2023
  • 资助金额:
    $ 26.02万
  • 项目类别:
UCLA Pediatric Research Education Program in Bioinformatics, Computational Biology, and Omics
加州大学洛杉矶分校生物信息学、计算生物学和组学儿科研究教育项目
  • 批准号:
    10629061
  • 财政年份:
    2023
  • 资助金额:
    $ 26.02万
  • 项目类别:
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
  • 批准号:
    2150396
  • 财政年份:
    2023
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Continuing Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
  • 批准号:
    2320846
  • 财政年份:
    2023
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Standard Grant
Core A: Biostatistics and Computational Biology Core
核心A:生物统计学和计算生物学核心
  • 批准号:
    10554475
  • 财政年份:
    2023
  • 资助金额:
    $ 26.02万
  • 项目类别:
Development of Innovative Fat Transplantation Based on Single Cell Analysis and Computational Biology of Subcutaneous Adipose Tissue-Derived Cells
基于皮下脂肪组织来源细胞的单细胞分析和计算生物学的创新脂肪移植的发展
  • 批准号:
    22H03246
  • 财政年份:
    2022
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
REU Site: Interdisciplinary Computational Biology (iCompBio)
REU 网站:跨学科计算生物学 (iCompBio)
  • 批准号:
    2149956
  • 财政年份:
    2022
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Standard Grant
CSR: Medium: Approximate Membership Query Data Structures in Computational Biology and Storage
CSR:中:计算生物学和存储中的近似成员资格查询数据结构
  • 批准号:
    2317838
  • 财政年份:
    2022
  • 资助金额:
    $ 26.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了