Volumetric imaging of blood perfusion and tissue morphology in the cochlea
耳蜗血液灌注和组织形态的体积成像
基本信息
- 批准号:8366898
- 负责人:
- 金额:$ 6.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnimal ModelAnimalsAnti-Inflammatory AgentsArteriesBedsBlood CellsBlood PressureBlood VesselsBlood capillariesBlood flowCaliberCaviaClinicalCochleaCochlear ductContrast MediaDataDevelopmentDevicesDiagnosisEdemaEndolymphatic ductExternal auditory canalGerbilsGoalsHistopathologyHumanImageIncidenceIndividualLabyrinthLaser-Doppler VelocimetryMagnetic Resonance ImagingMeasurementMeasuresMeniere&aposs DiseaseMetricMicrocirculationMorphologyNoiseOptical Coherence TomographyOpticsOrgan of CortiOutpatientsPositioning AttributePropertyRelative (related person)ResearchResolutionScanningSensorineural Hearing LossSpeedSurgical incisionsSystemTechniquesTestingThree-Dimensional ImageTimeTissuesTranslatingVeinsVestibular membraneWorkarmarteriolebaseblood perfusioncapillarycostdesigndisease diagnosisendolymphatic sacimaging modalityimaging probeimprovedin vivoinstrumentlight scatteringmicroangiographyminiaturizenoveloperationoptical imagingparticleprototypepublic health relevancesuccesstool
项目摘要
DESCRIPTION (provided by applicant): Non-invasive techniques for determining blood flow in the cochlea and imaging its tissue morphology are of paramount importance for the improved understanding, diagnosis, and treatment of sudden sensorineural hearing loss (SSHL) and Meniere's disease. Currently there is no device capable of in vivo measurement of volumetric cochlear blood flow (CoBF) or cochlear tissue morphology. We propose to develop an outpatient imaging instrument that is able to measure CoBF in the human inner ear and categorize the flow level as normal or abnormal. The instrument will also image the position of Reissner's membrane and determine if there is a cochlea hydrops. The instrument can be applied in the outpatient setting and for the first time will provide a metric for determining the basis for, and the form and incidence of 'vascular' SSHL and the rational treatment with vasoactive and anti-inflammatory agents. It will be able to confirm the hydrops form of Meniere's disease diagnosis. The design of the proposed instrument is based on a novel optical imaging modality, 3D optical microangiography (OMAG) and optical coherence tomography (OCT) that we have recently developed. OMAG is able, for the first time, to image the 3D distribution of dynamic blood perfusion, down to the capillary level, within the microcirculation tissue beds at an imaging depth up to 2.00mm into tissue. OMAG produces imaging contrast via endogenous light scattering from moving particles (e.g. flowing blood cells within open vessels), thus no exogenous contrast agents are necessary. It is markedly different from LDF as one may obtain a calibrated metric for the blood flow. Using the OMAG system, we have been able to capture in vivo 3D blood flow images, down to capillary level resolution, from the cochlea in gerbils. The OCT mode of operation of the instrument provided images in the plane passing through the organ of Corti and scala media space that revealed the position of Reissner's membrane. In the proposed research, we aim to design this novel imaging system for in vivo imaging cochlear tissue morphology and CoBF and will test it in an animal model. By its use in humans we expect to define blood flow involvement in SSHL since, with the instrument, blood flow can be systematically investigated for the first time at the resolution level of identifiable vessel classes (artery, arterioles, capillaries, venues and vein). We will correlate the data obtained from use of the instrument with that obtained by high field strength MRI. The project design also includes a clinical arm that aims to translate the technique into the clinical settings.
PUBLIC HEALTH RELEVANCE: We propose to develop a novel optical imaging instrument that can provide the simultaneous, quantitative assessment of blood flow and tissue morphology in the cochlea in clinical settings. This novel imaging instrument will become an important tool to improve the understanding, diagnosis and treatment of sudden sensorineural hearing loss and Meniere's disease
描述(申请人提供):非侵入性技术用于测定耳蜗血流量并对其组织形态进行成像,对于提高对突发性感音神经性耳聋(SSHL)和梅尼埃病的认识、诊断和治疗至关重要。目前还没有能够在体内测量体积耳蜗血流量(CoBF)或耳蜗组织形态的设备。我们建议开发一种门诊成像仪,它能够测量人内耳的CoBF,并将血流水平分为正常或异常。该仪器还将对Reissner膜的位置进行成像,并确定是否存在耳蜗水。该仪器可应用于门诊环境,首次将提供一种指标,用于确定“血管性”SSHL的基础、形式和发生率,以及血管活性和抗炎药物的合理治疗。它将能够确认梅尼埃病的积水形式的诊断。该仪器的设计是基于我们最近开发的一种新的光学成像方式--三维光学微血管成像(OMAG)和光学相干层析成像(OCT)。OMAG首次能够对微循环组织床内的动态血液灌流的3D分布进行成像,成像深度可达2.00 mm。OMAG通过运动颗粒(例如,开放血管内流动的血细胞)的内源性光散射产生成像对比度,因此不需要外源造影剂。它与LDF有明显的不同,因为人们可以获得一个校准的血流度量。使用OMAG系统,我们已经能够从沙土鼠的耳蜗处捕捉到体内3D血流图像,分辨率达到毛细血管水平。该仪器的OCT操作模式提供了穿过Corti器官和Scala媒介间隙的平面图像,显示了Reissner膜的位置。在这项拟议的研究中,我们的目标是设计这种新型的成像系统,用于活体成像耳蜗组织形态和CoBF,并将在动物模型中进行测试。通过在人体上的使用,我们希望确定SSHL中的血流参与,因为使用该仪器,可以首次在可识别的血管类别(动脉、小动脉、毛细血管、场地和静脉)的分辨率水平上系统地研究血流。我们将把使用该仪器获得的数据与高场强磁共振获得的数据进行关联。该项目设计还包括一个临床分支,旨在将该技术转化为临床环境。
公共卫生相关性:我们建议开发一种新的光学成像仪器,该仪器可以在临床环境中提供对耳蜗血流量和组织形态的同步、定量评估。这一新的成像仪器将成为提高对突发性感音神经性聋和梅尼埃病的认识、诊断和治疗的重要工具
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruikang Wang其他文献
Ruikang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruikang Wang', 18)}}的其他基金
Ultra-wide field optical coherence tomography based angiography for imaging diabetic retinopathy
基于超广角光学相干断层扫描的血管造影用于糖尿病视网膜病变成像
- 批准号:
10176506 - 财政年份:2018
- 资助金额:
$ 6.07万 - 项目类别:
NON-INVASIVE REAL-TIME LABEL-FREE 3D IMAGING OF RETINAL MICROCIRCULATION
视网膜微循环非侵入式实时无标记 3D 成像
- 批准号:
8793196 - 财政年份:2014
- 资助金额:
$ 6.07万 - 项目类别:
NON-INVASIVE REAL-TIME LABEL-FREE 3D IMAGING OF RETINAL MICROCIRCULATION
视网膜微循环非侵入式实时无标记 3D 成像
- 批准号:
8998950 - 财政年份:2014
- 资助金额:
$ 6.07万 - 项目类别:
NON-INVASIVE REAL-TIME LABEL-FREE 3D IMAGING OF RETINAL MICROCIRCULATION
视网膜微循环非侵入式实时无标记 3D 成像
- 批准号:
8639862 - 财政年份:2014
- 资助金额:
$ 6.07万 - 项目类别:
Volumetric imaging of blood perfusion and tissue morphology in the cochlea
耳蜗血液灌注和组织形态的体积成像
- 批准号:
8211031 - 财政年份:2009
- 资助金额:
$ 6.07万 - 项目类别:
Volumetric imaging of blood perfusion and tissue morphology in the cochlea
耳蜗血液灌注和组织形态的体积成像
- 批准号:
8300967 - 财政年份:2009
- 资助金额:
$ 6.07万 - 项目类别:
High resolution 3D functional imaging of cerebrovascular perfusion in mice
小鼠脑血管灌注的高分辨率 3D 功能成像
- 批准号:
7841429 - 财政年份:2009
- 资助金额:
$ 6.07万 - 项目类别:
Label-free optical imaging of 3D structural and functional microcirculations
3D 结构和功能微循环的无标记光学成像
- 批准号:
7901358 - 财政年份:2009
- 资助金额:
$ 6.07万 - 项目类别:
Label-free optical imaging of 3D structural and functional microcirculations
3D 结构和功能微循环的无标记光学成像
- 批准号:
8207029 - 财政年份:2009
- 资助金额:
$ 6.07万 - 项目类别:
Label-free optical imaging of 3D structural and functional microcirculations
3D 结构和功能微循环的无标记光学成像
- 批准号:
8232068 - 财政年份:2009
- 资助金额:
$ 6.07万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 6.07万 - 项目类别:
Continuing Grant