Label-free optical imaging of 3D structural and functional microcirculations

3D 结构和功能微循环的无标记光学成像

基本信息

  • 批准号:
    7901358
  • 负责人:
  • 金额:
    $ 10.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The primary objective for the proposed project is to develop a novel high-resolution (<10 5m), real-time and non-invasive optical imaging tool that is capable of comprehensive, simultaneous, and quantitative assessments of blood perfusion and tissue oxygen consumption within a scanned tissue volume up to 2 mm in depth without the use of labeling technique. Non-invasive and label-free imaging techniques for quantifying blood flow and blood oxygenation - down to capillary-level resolution - are of paramount importance for the improved understanding, diagnosis, and treatment of diseases that have peripheral vascular involvement, such as stroke, traumatic brain injury, hemorrhage, retinopathy, and cancer. Currently no optical imaging techniques are available that can offer simultaneous measurements of blood perfusion and oxygen consumption at a critical imaging depth (>1mm) within microcirculatory tissue beds in vivo. The proposed imaging tool - functional optical micro-angiography (fOMAG) - is a comprehensive and label- free volumetric imaging technology designed to simultaneously image and quantify blood perfusion and the oxygenation status of perfused blood within a scanned tissue volume. fOMAG will be designed to: 1) Image the detailed vessel architectures by separating endogenous optical signals backscattered from blood flow, from those endogenous optical signals backscattered from the tissue background (i.e. from bulk static tissue); 2) Determine volumetric blood flow by employing a novel Doppler OMAG technique. This technique is based on the linear relationship between phase-changes in the optical fOMAG signals and the blood flow velocity when fOMAG images the tissue; 3) Map the oxygenation status of the blood perfusion by a novel spectroscopic OMAG technique, which relies on the different molar extinction coefficients between the oxygenated and de- oxygenated hemoglobin in the near-infrared region at 800 nm wavelength band. The project will test the hypothesis that blood perfusion and oxygen consumption in tissues can be invasively and reliably imaged, quantified, and characterized simultaneously in real time, at 0- to 2-mm tissue depths and at a resolution of <10 5m. The specific aims of the project are to: 1) construct an fOMAG imaging system, 2) develop a novel phase- resolved Doppler OMAG to quantify volumetric blood flow, 3) characterize a novel spectroscopic OMAG to image oxygen saturation in blood vessels, 4) validate fOMAG In vivo by volumetric imaging of cerebral blood perfusion in mice, and 5) investigate the utility of fOMAG for non-invasive transcranial monitoring of changes in cerebrovascular blood flow and healing-associated neovascularization after traumatic brain injury in mice. PUBLIC HEALTH RELEVANCE: We propose to develop a novel biomedical imaging technology, functional optical micro-angiography that can provide the simultaneous, quantitative assessment of tissue blood perfusion and oxygen consumption within a scanned tissue volume in vivo non-invasively and without the use of labeling techniques. This novel imaging technique will become an important tool to investigate blood supply to tissues, and may help diagnosis, monitoring, and therapeutic interventions in diseases with vascular involvement.
描述(由申请人提供):拟议项目的主要目标是开发一种新型的高分辨率(<10 5 m)、实时和非侵入性光学成像工具,该工具能够在深度达2 mm的扫描组织体积内全面、同步和定量评估血液灌注和组织耗氧量,而无需使用标记技术。用于量化血流和血氧的非侵入性和无标记成像技术-低至毛细血管水平分辨率-对于改善对具有外周血管受累的疾病(例如中风、创伤性脑损伤、出血、视网膜病变和癌症)的理解、诊断和治疗至关重要。目前,没有光学成像技术可以提供在体内微循环组织床内的临界成像深度(> 1 mm)处的血液灌注和氧消耗的同时测量。所提出的成像工具-功能性光学微血管造影术(fOMAG)-是一种全面的和无标记的体积成像技术,其被设计为同时成像和量化在扫描的组织体积内的血液灌注和灌注血液的氧合状态。fOMAG将被设计为:1)通过将从血流反向散射的内源性光学信号与从组织背景(即,从大量静态组织)反向散射的那些内源性光学信号分离来对详细的血管结构成像; 2)通过采用新颖的多普勒OMAG技术来确定体积血流。该技术基于光学fOMAG信号的相位变化与fOMAG成像组织时的血流速度之间的线性关系; 3)通过新的光谱OMAG技术绘制血液灌注的氧合状态,该光谱OMAG技术依赖于在800 nm波长带的近红外区域中的氧合血红蛋白和脱氧血红蛋白之间的不同摩尔消光系数。该项目将测试的假设,即血液灌注和组织中的氧消耗可以侵入性和可靠的成像,量化,并同时表征在真实的时间,在0- 2毫米的组织深度和分辨率<10 5米。该项目的具体目标是:1)构建fOMAG成像系统,2)开发新的相位分辨多普勒OMAG以量化体积血流,3)表征新的光谱OMAG以成像血管中的氧饱和度,4)通过小鼠脑血液灌注的体积成像来验证fOMAG体内,5)探讨fOMAG在无创性经颅监测小鼠脑外伤后脑血管血流变化和愈合相关新生血管形成中的作用。公共卫生相关性:我们建议开发一种新的生物医学成像技术,功能性光学微血管造影,可以提供同时,定量评估组织的血液灌注和氧消耗在体内扫描的组织体积内的非侵入性和不使用标记技术。这种新的成像技术将成为研究组织血液供应的重要工具,并可能有助于血管受累疾病的诊断,监测和治疗干预。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruikang Wang其他文献

Ruikang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruikang Wang', 18)}}的其他基金

Ultra-wide field optical coherence tomography based angiography for imaging diabetic retinopathy
基于超广角光学相干断层扫描的血管造影用于糖尿病视网膜病变成像
  • 批准号:
    10176506
  • 财政年份:
    2018
  • 资助金额:
    $ 10.75万
  • 项目类别:
NON-INVASIVE REAL-TIME LABEL-FREE 3D IMAGING OF RETINAL MICROCIRCULATION
视网膜微循环非侵入式实时无标记 3D 成像
  • 批准号:
    8793196
  • 财政年份:
    2014
  • 资助金额:
    $ 10.75万
  • 项目类别:
NON-INVASIVE REAL-TIME LABEL-FREE 3D IMAGING OF RETINAL MICROCIRCULATION
视网膜微循环非侵入式实时无标记 3D 成像
  • 批准号:
    8998950
  • 财政年份:
    2014
  • 资助金额:
    $ 10.75万
  • 项目类别:
NON-INVASIVE REAL-TIME LABEL-FREE 3D IMAGING OF RETINAL MICROCIRCULATION
视网膜微循环非侵入式实时无标记 3D 成像
  • 批准号:
    8639862
  • 财政年份:
    2014
  • 资助金额:
    $ 10.75万
  • 项目类别:
Volumetric imaging of blood perfusion and tissue morphology in the cochlea
耳蜗血液灌注和组织形态的体积成像
  • 批准号:
    8211031
  • 财政年份:
    2009
  • 资助金额:
    $ 10.75万
  • 项目类别:
Volumetric imaging of blood perfusion and tissue morphology in the cochlea
耳蜗血液灌注和组织形态的体积成像
  • 批准号:
    8300967
  • 财政年份:
    2009
  • 资助金额:
    $ 10.75万
  • 项目类别:
High resolution 3D functional imaging of cerebrovascular perfusion in mice
小鼠脑血管灌注的高分辨率 3D 功能成像
  • 批准号:
    7841429
  • 财政年份:
    2009
  • 资助金额:
    $ 10.75万
  • 项目类别:
Volumetric imaging of blood perfusion and tissue morphology in the cochlea
耳蜗血液灌注和组织形态的体积成像
  • 批准号:
    8366898
  • 财政年份:
    2009
  • 资助金额:
    $ 10.75万
  • 项目类别:
Label-free optical imaging of 3D structural and functional microcirculations
3D 结构和功能微循环的无标记光学成像
  • 批准号:
    8207029
  • 财政年份:
    2009
  • 资助金额:
    $ 10.75万
  • 项目类别:
Label-free optical imaging of 3D structural and functional microcirculations
3D 结构和功能微循环的无标记光学成像
  • 批准号:
    8232068
  • 财政年份:
    2009
  • 资助金额:
    $ 10.75万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了