Photocleavable Bead Technology for Glycomics

用于糖组学的光裂解珠技术

基本信息

  • 批准号:
    8455590
  • 负责人:
  • 金额:
    $ 34.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-28 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: Post-translational modifications of proteins (PTMs) play a central role in diverse cellular processes including protein folding, targeting, signal transduction, immune response, adherence, motility and protein degradation. Over 300 different types of PTMs are already known and are found in an estimated 80% of all proteins, accounting in part for the vastly larger proteome compared to the genome. Increasingly, the importance of characterizing these PTMs and how they modulate protein function is being recognized as crucial to understanding the molecular basis for disease, as well as to the discovery of new diagnostic/prognostic biomarkers, development of new drug therapies and even understanding the interaction of different viruses with cell receptors. However, many challenges exist in developing effective techniques that can detect and analyze PTMs which can be highly complex, especially in the case of glycosylation of proteins. As stated in this grant solicitation "Strategies for separation, profiling quantitation and detailed characterization of carbohydrate structures are central challenges". Recently, progress has been made towards screening glycomic PTMs using glycan microarrays including arrays of O-glycosylated peptides (O-PTMs) and photo-generated carbohydrate arrays. However, limitations in protein microarray technology, including relatively low density especially when arraying large protein/peptide libraries, poor reproducibility, and poor assay kinetics, make this approach less than ideal. In addition, unlike mass spectrometry, which is conventionally used to analyze glycosylation of peptides and proteins, microarrays do not provide such information. Large combinatorial bead-libraries of glycopeptides offer an alternative to microarrays, but normally utilize "panning" methods to measure interactions with the library, requiring manual "picking" of large, single beads for subsequent one-by-one analysis by mass spectrometry. During Phase I we will develop a new approach to glycomics which combines the advantages of mass spectrometry and photocleavable linker technology developed by AmberGen. In one example, a photocleavable glycopeptide bead library will be synthesized and randomly incorporated into a high-density Pico-well plate to form an array. As demonstrated in preliminary experiments, this approach allows the effects of interacting biomolecules such as glycan binding proteins (GBPs), glycosidases/glycotransferases, kinases and drugs to be rapidly measured on potentially millions of different "bait" glycopeptides in the bead-array, with high sensitivity and spatial resolution. In a second, non-array based example, the photocleavable glycopeptide bead library is treated with a biospecimens containing a particular "prey" type of interest (e.g. a serum autoantibody). Glycopeptide-prey complexes are then rapidly photo-enriched to very high purity using a "photo-release and re-capture" workflow. This is followed by conventional mass spectrometry-based proteomic analysis to identify the interacting bait glycopeptides, allowing rapid identification of potential biomarkers for disease diagnosis and treatment. A third approach builds on the recently reported use of AmberGen's photocleavable linkers to identify O-linked beta- N-acetylglucosamine (O-GlcNAc) protein modifications in cells, tissues and other biospecimens. The importance of these modifications has been compared to phosphorylation, yet our ability to accurately detect and characterize them is just now emerging with exciting new methods. Here, we will improve upon these methods by using proprietary photocleavable isotope coded affinity tagging reagents (PC-ICAT) for quantitative glycoproteomics to determine how O-GlcNAc patterns change, e.g. in normal and diseased states. In order to accelerate commercialization of the methods and products resulting from this project we will work closely during Phase I and II with Bruker Daltonics (Billerica, MA), a world-leading provider of MALDI-MS instrumentation (see letter from Dr. Gary Kruppa, V.P. of Business Development). In addition, we will collaborate with Dr. Ola Blixt of the Center for Glycomics, Copenhagen University in Denmark, the developer of robust methods for synthesis of glycopeptide libraries, and Dr. Cathy Costello, Director, Boston University Center for Biomedical Mass Spectrometry, President, Human Proteome Organization, and Professor, Biochemistry, Biophysics and Chemistry who is a recognized expert in mass spectrometry based glycomics techniques (see letters of collaboration from both Drs. Blixt and Costello). PUBLIC HEALTH RELEVANCE: Proteins, the functional machinery of cells, are tightly regulated by the cell using hundreds of possible dynamic, chemical modifications to the protein's structure, including by the attachment of carbohydrate molecules (glycosylation). In disease processes such as cancer, these regulatory mechanisms become dysfunctional. Here we propose to develop improved technology for measuring these changes which combines light cleavable chemical linkers, advanced mass spectrometry techniques and protein (peptide) microarrays which will ultimately lead to a better understanding of disease mechanisms and how to detect and treat diseases.
产品说明: 蛋白质的翻译后修饰(Posttranslational modifications of proteins,PTM)在蛋白质折叠、靶向、信号转导、免疫应答、粘附、运动和蛋白质降解等多种细胞过程中发挥着重要作用。已知有超过300种不同类型的PTM,并且在估计80%的所有蛋白质中发现,部分原因是与基因组相比,蛋白质组要大得多。越来越多的人认识到,表征这些PTM及其如何调节蛋白质功能的重要性对于理解疾病的分子基础,以及发现新的诊断/预后生物标志物,开发新的药物疗法,甚至理解不同病毒与细胞受体的相互作用至关重要。然而,在开发可以检测和分析可能高度复杂的PTM的有效技术方面存在许多挑战,特别是在蛋白质糖基化的情况下。正如在这份资助申请中所述,“分离、分析定量和详细表征碳水化合物结构的策略是核心挑战”。最近,使用聚糖微阵列(包括O-糖基化肽(O-PTM)阵列和光生碳水化合物阵列)筛选糖基PTM已经取得了进展。然而,蛋白质微阵列技术的局限性,包括相对低的密度,特别是当排列大的蛋白质/肽文库时,差的再现性和差的测定动力学,使得这种方法不太理想。此外,与常规用于分析肽和蛋白质的糖基化的质谱法不同,微阵列不提供这样的信息。糖肽的大型组合珠库提供了微阵列的替代方案,但通常利用“淘选”方法来测量与库的相互作用,需要手动“挑选”大的单个珠用于随后通过质谱法进行的逐个分析。在第一阶段,我们将开发一种新的糖组学方法,该方法结合了质谱法和AmberGen开发的光可裂解接头技术的优势。在一个实例中,将合成光可裂解糖肽珠文库并将其随机掺入高密度皮可孔板中以形成阵列。如在初步实验中所证明的,这种方法允许相互作用的生物分子如聚糖结合蛋白(GBP)、糖苷酶/糖基转移酶、激酶和药物的作用以高灵敏度和空间分辨率对珠阵列中潜在的数百万种不同的“诱饵”糖肽进行快速测量。在第二个非基于阵列的实施例中,用含有特定目标“猎物”类型(例如血清自身抗体)的生物样本处理光可裂解糖肽珠文库。然后使用“光释放和再捕获”工作流程将糖肽-猎物复合物快速光富集至非常高的纯度。随后进行常规的基于质谱的蛋白质组学分析,以鉴定相互作用的诱饵糖肽,从而快速鉴定用于疾病诊断和治疗的潜在生物标志物。第三种方法建立在最近报道的使用AmberGen的光裂解接头来鉴定细胞、组织和其他生物标本中的O-连接的β-N-乙酰葡糖胺(O-GlcNAc)蛋白修饰的基础上。这些修饰的重要性已经与磷酸化进行了比较,但我们准确检测和表征它们的能力现在正在出现令人兴奋的新方法。在这里,我们将通过使用专有的光可裂解同位素编码的亲和标记试剂(PC-ICAT)进行定量糖蛋白组学来改进这些方法,以确定O-GlcNAc模式如何变化,例如在正常和患病状态下。为了加速该项目产生的方法和产品的商业化,我们将在第一阶段和第二阶段与世界领先的MALDI-MS仪器供应商Bruker Daltonics(马萨诸塞州比勒里卡)密切合作(见业务发展副总裁加里克虏伯博士的来信)。此外,我们还将与丹麦哥本哈根大学糖组学中心的奥拉布利克斯特博士(糖肽库合成的稳健方法的开发者)和波士顿大学生物医学质谱中心主任、人类蛋白质组组织主席兼生物化学教授凯茜·科斯特洛博士(Cathy Costello)合作,生物物理学和化学,是公认的基于质谱的糖组学技术专家(参见Blixt博士和Costello博士的合作信)。 公共卫生关系:蛋白质是细胞的功能机器,由细胞使用数百种可能的动态化学修饰来严格调节蛋白质的结构,包括通过碳水化合物分子的附着(糖基化)。在癌症等疾病过程中,这些调节机制变得功能失调。在这里,我们建议开发改进的技术来测量这些变化,该技术结合了光可切割的化学接头,先进的质谱技术和蛋白质(肽)微阵列,最终将导致更好地了解疾病机制以及如何检测和治疗疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Lim其他文献

Mark Lim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Lim', 18)}}的其他基金

New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
  • 批准号:
    10481680
  • 财政年份:
    2022
  • 资助金额:
    $ 34.92万
  • 项目类别:
A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
  • 批准号:
    10603396
  • 财政年份:
    2022
  • 资助金额:
    $ 34.92万
  • 项目类别:
Photocleavable Mass-Tags for Spatial Multiomics of Alzheimer’s Brain Tissue
用于阿尔茨海默病脑组织空间多组学的光裂解质量标签
  • 批准号:
    10684250
  • 财政年份:
    2022
  • 资助金额:
    $ 34.92万
  • 项目类别:
A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
  • 批准号:
    10705203
  • 财政年份:
    2022
  • 资助金额:
    $ 34.92万
  • 项目类别:
New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
  • 批准号:
    10686794
  • 财政年份:
    2022
  • 资助金额:
    $ 34.92万
  • 项目类别:
Photocleavable Mass-Tags for Spatial Multiomics of Alzheimer’s Brain Tissue
用于阿尔茨海默病脑组织空间多组学的光裂解质量标签
  • 批准号:
    10483988
  • 财政年份:
    2022
  • 资助金额:
    $ 34.92万
  • 项目类别:
Photocleavage Technology for Blood-based Multi-Biomarker Alzheimer's Disease Assay
用于基于血液的多生物标志物阿尔茨海默病检测的光裂解技术
  • 批准号:
    10227129
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
Highly Multiplexed Nanoscale Mass Spectrometric Imaging of Cancer Tissues
癌症组织的高度多重纳米级质谱成像
  • 批准号:
    9908822
  • 财政年份:
    2018
  • 资助金额:
    $ 34.92万
  • 项目类别:
Highly Multiplexed Nanoscale Mass Spectrometric Imaging of Cancer Tissues
癌症组织的高度多重纳米级质谱成像
  • 批准号:
    10019483
  • 财政年份:
    2018
  • 资助金额:
    $ 34.92万
  • 项目类别:
Photocleavage Technology for Improved Serum-based Multi-Biomarker Cancer Assays
用于改进基于血清的多生物标志物癌症检测的光裂解技术
  • 批准号:
    9175644
  • 财政年份:
    2016
  • 资助金额:
    $ 34.92万
  • 项目类别:

相似海外基金

Evaluation of the usefulness of N-acetylglucosamine in patients with rheumatoid arthritis
N-乙酰氨基葡萄糖对类风湿性关节炎患者的有效性评估
  • 批准号:
    20K16049
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NSF Postdoctoral Fellowship in Biology FY 2020: NSF Postdoctoral Fellowship in Biology FY 2020: Requirement for N-Acetylglucosamine Transporters in Arbuscular Mycorrhizal Symbiosis
2020 财年 NSF 生物学博士后奖学金:2020 财年 NSF 生物学博士后奖学金:丛枝菌根共生中 N-乙酰氨基葡萄糖转运蛋白的要求
  • 批准号:
    2010882
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Fellowship Award
The role of protein O-linked N-Acetylglucosamine in regulating cardiac physiology
蛋白O-连接的N-乙酰氨基葡萄糖在调节心脏生理学中的作用
  • 批准号:
    10213829
  • 财政年份:
    2020
  • 资助金额:
    $ 34.92万
  • 项目类别:
The role of O-linked N-Acetylglucosamine Homeostasis in Pancreatic Beta-cell Development and Function
O-连接的 N-乙酰氨基葡萄糖稳态在胰腺 β 细胞发育和功能中的作用
  • 批准号:
    10406255
  • 财政年份:
    2018
  • 资助金额:
    $ 34.92万
  • 项目类别:
The role of O-linked N-Acetylglucosamine Homeostasis in Pancreatic Beta-cell Development and Function
O-连接的 N-乙酰氨基葡萄糖稳态在胰腺 β 细胞发育和功能中的作用
  • 批准号:
    10158468
  • 财政年份:
    2018
  • 资助金额:
    $ 34.92万
  • 项目类别:
The role of O-linked N-Acetylglucosamine Homeostasis in Pancreatic Beta-cell Development and Function
O-连接的 N-乙酰氨基葡萄糖稳态在胰腺 β 细胞发育和功能中的作用
  • 批准号:
    9922900
  • 财政年份:
    2018
  • 资助金额:
    $ 34.92万
  • 项目类别:
O-linked-N-acetylglucosamine Post-translational Modification in Pancreatic Beta-cells Regulating ER Stress and Mitochondrial Function
胰腺β细胞中的O-连接-N-乙酰氨基葡萄糖翻译后修饰调节内质网应激和线粒体功能
  • 批准号:
    9387765
  • 财政年份:
    2017
  • 资助金额:
    $ 34.92万
  • 项目类别:
The role of o-linked N-acetylglucosamine transferase on polycomb group proteins
O-联N-乙酰氨基葡萄糖转移酶对多梳蛋白的作用
  • 批准号:
    481700-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of chemical tools for the study of human O-linked N-acetylglucosamine transferase - delineating the roles of glycosylation and proteolysis on host-cell factor 1 function
开发用于研究人 O-连接 N-乙酰氨基葡萄糖转移酶的化学工具 - 描述糖基化和蛋白水解对宿主细胞因子 1 功能的作用
  • 批准号:
    438828-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 34.92万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Utilization of N-acetylglucosamine by Streptococcus mutans and its regulation
变形链球菌对N-乙酰氨基葡萄糖的利用及其调控
  • 批准号:
    8808938
  • 财政年份:
    2014
  • 资助金额:
    $ 34.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了