A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
基本信息
- 批准号:10603396
- 负责人:
- 金额:$ 108.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAgarAntibodiesBRAIN initiativeBiological MarkersBrainBrain imagingCollaborationsComputer softwareData AnalysesData SetDevelopmentDiseaseFluorescenceFreezingGoalsHospitalsHourHumanImageImage AnalysisImaging DeviceImaging technologyImmunohistochemistryIndividualLabelLectinLengthLinkMapsMetalsMethodsModalityMolecularMusNeurodegenerative DisordersNeurosciencesPatternPhasePlayPolysaccharidesProceduresProductionProteinsProteomicsResolutionScanningSliceSpatial DistributionSpecimenSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStainsTechniquesTechnologyTissue imagingTissuesUnited States National Institutes of HealthValidationVisualizationWomanbasebrain dysfunctionbrain tissuecommercializationdenoisingfluorescence imagingglycosylationinstrumentationmass spectrometric imagingmedical schoolsmetabolomicsmultimodalitymultiple omicsneuronal circuitrynovelpreservationprotein expressionreconstructionsmall moleculetool
项目摘要
Summary/Abstract
A central goal of the NIH Brain Initiative is to develop new imaging tools sufficiently powerful to spatially map at
high resolution the neuronal circuitry and underlying molecular composition of the brain. While cutting edge
imaging tools and related labeling techniques have been developed, it is still a major challenge to map the spatial
distribution at different length scales of the thousands of biomolecules, including expressed proteins, which play
key roles in brain function. The goal of this Phase II project is to evaluate the ability of a new tissue imaging
technology developed by AmberGen, termed MALDI-IHC, to rapidly create a highly multiplexed, multiomic and
multimodal 3D molecular map of the mouse brain. The development of MALDI-IHC for whole brain imaging will
provide neuroscientists with an important new tool for exploring the underlying molecular basis of brain function
and neurodegenerative disorders. MALDI-IHC is based on the use of novel photocleavable mass-tags (PC-MTs)
developed by AmberGen which when linked to antibody or lectin probes enable targeted biomolecules to be
identified in the mass spectrometric image. This approach significantly exceeds the multiplex capability of
fluorescence immunohistochemistry (IHC) and previous cleavable mass-tag based methods which are generally
limited to 5 biomarkers or require extensive cycling procedures. It also exceeds the capability of metal-tagged
antibody techniques such as IMC and MIBI which can probe small mm2 regions at subcellular resolution but are
limited to approximately 40 antibody probes and require several days to scan a whole tissue section. In contrast,
MALDI-IHC can image an entire mouse brain FFPE section for over 100 targeted proteins at 40 µm resolution in
less than one hour. The ability of MALDI-IHC to perform label-free, untargeted small molecule mass spectrometric
imaging (MSI), fluorescence imaging using unique dual-labeled fluorescent-PC-MT probes and high-plex imaging
of intact expressed proteins including glycosylation patterns on the same tissue section greatly extends the power
of this approach. During Phase I, we demonstrated the feasibility of this combined approach on mouse brain FF
and FFPE tissue specimens. During Phase II, we will develop methods using MALDI-IHC to reconstruct whole
mouse brain protein expression maps at 40 µm voxel resolution. FFPE sagittal and coronal mouse brain tissue slices
from mouse brain will be probed by MALDI-IHC using a panel of 50 NeuroMab PC-MT antibodies and 25 PC-MT
lectins. Validation of individual PC-MT probes will be performed by comparing MALDI-IHC and fluorescence IHC
images. A 3D tri-modal map of the mouse brain merging both metabolites and expressed proteins will also be
reconstructed based on a demonstrated workflow that involves MSI of unlabeled small molecules from successive
FF specimens, IHC staining with a 75-plex panel of PC-MT probes including some dual-labeled PC-MT antibodies,
and fluorescence imaging followed by MSI of the PC-MTs. Reconstruction of 3D maps, visualization and image
analysis will be performed using Bruker SCiLS™ software. Commercialization of MALDI-IHC technology will be
accelerated by a close collaboration with Bruker Daltonics, the market leader of MALDI-MSI instrumentation.
摘要/摘要
NIH大脑倡议的一个中心目标是开发新的成像工具,这些工具足够强大,可以在
高分辨率大脑的神经回路和潜在的分子组成。在尖端的同时
成像工具和相关的标记技术已经发展起来,但绘制空间地图仍然是一个重大挑战
数以千计的生物分子在不同长度尺度上的分布,包括表达的蛋白质,它们发挥着
在大脑功能中的关键作用。这个第二阶段项目的目标是评估一种新的组织成像的能力
由AmberGen开发的技术,称为MALDI-IHC,用于快速创建高度多元化的、多组的和
小鼠大脑的多模式3D分子图谱。全脑成像用MALDI-IHC的发展将
为神经科学家探索大脑功能的潜在分子基础提供了一个重要的新工具
和神经退行性疾病。MALDI-IHC是基于新型可光裂解质量标签(PC-MTS)的使用
由AmberGen开发,当连接到抗体或凝集素探针时,使目标生物分子能够
在质谱学图像中被鉴定。这种方法大大超过了
荧光免疫组织化学(IHC)和以前的基于可切割质量标记的方法通常是
限制为5个生物标志物或需要广泛的自行车程序。它也超过了金属标签的能力
抗体技术,如IMC和MIBI,可以亚细胞分辨率探测小的mm2区域,但
限于大约40个抗体探针,需要几天时间才能扫描整个组织切片。相比之下,
MALDI-IHC可以在40微米的分辨率下对超过100个目标蛋白质的整个小鼠脑FFPE切片进行成像
不到一个小时。MALDI-IHC进行无标记、非靶向小分子质谱学的能力
成像(MSI)、使用独特的双标记荧光PC-MT探针的荧光成像和高复合成像
完整表达的蛋白质,包括糖基化模式,在同一组织切片上大大扩展了力量
这种方法的一部分。在第一阶段中,我们在小鼠脑FF上证明了这种联合方法的可行性。
和FFPE组织标本。在第二阶段,我们将开发使用MALDI-IHC重建整体的方法
40微米体素分辨率的小鼠脑蛋白质表达图谱。FFPE小鼠矢状面和冠状面脑组织切片
将由MALDI-IHC使用一组50个NeuroMab PC-MT抗体和25个PC-MT来探测来自小鼠大脑的
凝集素。将通过比较MALDI-IHC和荧光IHC对单个PC-MT探针进行验证
图像。小鼠大脑的3D三模式图融合了代谢物和表达的蛋白质,也将是
基于涉及来自连续的未标记小分子的MSI的演示工作流重建
FF标本,用包括一些双标记PC-MT抗体的PC-MT探针的75个复合体进行IHC染色,
以及PC-MTS的荧光成像和MSI。三维地图、可视化和图像的重建
分析将使用Bruker SCiLS™软件进行。MALDI-IHC技术的商业化将是
通过与MALDI-MSI仪器的市场领先者Bruker Daltonics的密切合作,加速了这一进程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Lim其他文献
Mark Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Lim', 18)}}的其他基金
New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
- 批准号:
10481680 - 财政年份:2022
- 资助金额:
$ 108.41万 - 项目类别:
Photocleavable Mass-Tags for Spatial Multiomics of Alzheimer’s Brain Tissue
用于阿尔茨海默病脑组织空间多组学的光裂解质量标签
- 批准号:
10684250 - 财政年份:2022
- 资助金额:
$ 108.41万 - 项目类别:
A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
- 批准号:
10705203 - 财政年份:2022
- 资助金额:
$ 108.41万 - 项目类别:
New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
- 批准号:
10686794 - 财政年份:2022
- 资助金额:
$ 108.41万 - 项目类别:
Photocleavable Mass-Tags for Spatial Multiomics of Alzheimer’s Brain Tissue
用于阿尔茨海默病脑组织空间多组学的光裂解质量标签
- 批准号:
10483988 - 财政年份:2022
- 资助金额:
$ 108.41万 - 项目类别:
Photocleavage Technology for Blood-based Multi-Biomarker Alzheimer's Disease Assay
用于基于血液的多生物标志物阿尔茨海默病检测的光裂解技术
- 批准号:
10227129 - 财政年份:2020
- 资助金额:
$ 108.41万 - 项目类别:
Highly Multiplexed Nanoscale Mass Spectrometric Imaging of Cancer Tissues
癌症组织的高度多重纳米级质谱成像
- 批准号:
9908822 - 财政年份:2018
- 资助金额:
$ 108.41万 - 项目类别:
Highly Multiplexed Nanoscale Mass Spectrometric Imaging of Cancer Tissues
癌症组织的高度多重纳米级质谱成像
- 批准号:
10019483 - 财政年份:2018
- 资助金额:
$ 108.41万 - 项目类别:
Photocleavage Technology for Improved Serum-based Multi-Biomarker Cancer Assays
用于改进基于血清的多生物标志物癌症检测的光裂解技术
- 批准号:
9175644 - 财政年份:2016
- 资助金额:
$ 108.41万 - 项目类别:
相似国自然基金
Cd(II)在NH2-Agar/PSS双网络水凝胶上的吸附行为及资源化工艺研究
- 批准号:51708204
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An ethnographic study on the utilization and allocation of sea resources among agar divers in Japan, Taiwan and Korea
日本、台湾、韩国琼脂潜水者海洋资源利用与配置的人种学研究
- 批准号:
19K13467 - 财政年份:2019
- 资助金额:
$ 108.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Edible optical systems made of agar
由琼脂制成的可食用光学系统
- 批准号:
18K19799 - 财政年份:2018
- 资助金额:
$ 108.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Agar-based gel-electrolytes for corrosion diagnostic
用于腐蚀诊断的琼脂基凝胶电解质
- 批准号:
330472124 - 财政年份:2017
- 资助金额:
$ 108.41万 - 项目类别:
Research Grants
Micro-Patterning of Agar Surface for Cultivation Control of Microbes
用于微生物培养控制的琼脂表面微图案化
- 批准号:
15K14703 - 财政年份:2015
- 资助金额:
$ 108.41万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Elucidation of the mechanism that heterotrophic bacteria induce the growth of the cyanobacterial strain on agar media
阐明异养细菌诱导蓝藻菌株在琼脂培养基上生长的机制
- 批准号:
26650166 - 财政年份:2014
- 资助金额:
$ 108.41万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The Production of Japanese Agar and Gelatin in Edo Period
江户时代日本琼脂和明胶的生产
- 批准号:
21520663 - 财政年份:2009
- 资助金额:
$ 108.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Organization of Novel Marine Bacterial Structures Involved in the Degradation of Agar
参与琼脂降解的新型海洋细菌结构的组织
- 批准号:
0109869 - 财政年份:2001
- 资助金额:
$ 108.41万 - 项目类别:
Continuing Grant
Swallowing Characteristics of Bolus of Agar Gels on the Swallowing Process
琼脂凝胶丸剂对吞咽过程的吞咽特性
- 批准号:
09680040 - 财政年份:1997
- 资助金额:
$ 108.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
HIGH FREQUENCY FLUX CONTROL OF MAGNETIC AGAR USING PLANT MAGNETIC MATERIAL AND ITS APPLICATIONS
植物磁性材料对磁性琼脂的高频通量控制及其应用
- 批准号:
08555095 - 财政年份:1996
- 资助金额:
$ 108.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Raum-Zeit-Strukturen von Ca2+-Signalen in einem SR-Vesikel-Agar-System; Experimente und Modellierung
SR囊泡琼脂系统中Ca2信号的时空结构;
- 批准号:
5194244 - 财政年份:1995
- 资助金额:
$ 108.41万 - 项目类别:
Research Grants














{{item.name}}会员




