New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
基本信息
- 批准号:10686794
- 负责人:
- 金额:$ 97.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-19 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcuteAddressAnalysis of VarianceAntibodiesAntibody ResponseAntigensBindingBiological AssayBostonCOVID-19COVID-19 pandemicCOVID-19 patientCharacteristicsClassificationCollaborationsCoupledCross ReactionsDevice or Instrument DevelopmentDiagnosticDimensionsDiseaseEpitopesEvaluationFeasibility StudiesFluorescenceHumanIgG1ImmobilizationImmuneImmune responseImmunoglobulin IsotypesIndividualInflammatory ResponseLabelLaboratoriesLinkLong COVIDMass Spectrum AnalysisMeasuresMethodsMicrobiologyModelingNatureNoiseOutcomePatientsPersonsPhasePhysicsPhysiologicalPhysiologyPlayPostdoctoral FellowROC CurveReagentReportingResearchResearch PersonnelResolutionSARS-CoV-2 B.1.617.2SARS-CoV-2 antibodySARS-CoV-2 antigenSARS-CoV-2 exposureSamplingSensitivity and SpecificitySerologySerumSeverity of illnessSignal TransductionStructureSystemTechnologyUniversitiesVaccinationVaccinesValidationVariantViral AntigensVirusWorkantigen bindingbreakthrough infectioncohortdesigndistinguished professoreffective therapyglycosylationimprovedmass spectrometric imagingmedical schoolsnew technologypandemic diseasepathogenpredictive modelingprofessorprognosticresponsesevere COVID-19successtooltraittwo-dimensionalvaccine hesitancyvirus infection mechanism
项目摘要
Summary/Abstract
The SARS-CoV-2 virus has infected to date 35 million and killed over 600,000 persons in the U.S. alone. Despite
initial success of the vaccines, the emergence of increasingly more infectious variants such as the delta variant,
coupled with vaccine hesitancy and insufficiently effective therapies, has resulted in a continued and deepening
national and world-wide pandemic crisis. Moreover, a significant fraction of COVID-19 patients (~35%), even those
who are initially asymptomatic, suffer long-term debilitating effects (“long-COVID”). Recent reports correlate the
structure of specific SARS-CoV-2 induced antibodies with potentially lethal proinflammatory responses in acute
COVID-19. Studies have also linked the antibody response to long-COVID. Moreover, the nature of the antibody
response to vaccination correlates with breakthrough infections. Thus, the ability to rapidly perform high-
resolution, highly multiplexed antibody response profiling can provide an essential tool, ultimately leading to more
effective diagnostics, prognostics, vaccines and treatments for both acute and long-term disease. However, current
antibody profiling methods produce a very limited view of the humoral repertoire. To address this unmet need,
AmberGen proposes to further develop in Phase II its mass spectrometric bead-array technology for in-depth
immune-profiling, termed PC-BAMS-IP™. This will provide researchers with a new and powerful tool for high-
resolution antibody profiling which unlike current technology facilitates 2-dimensions of multiplexing. This is
accomplished using arrayed photocleavable mass-tag (PC-MT) encoded beads bearing viral antigens to bind serum
antibodies, along with a range of PC-MT encoded probes to simultaneously measure the full breadth of bead-bound
antibody types. Mass spectrometry imaging (MSI) of the bead-arrays facilitates the decoding of thousands of
different PC-MTs, thereby revealing the full complexity of the antibody response and a means to correlate it with
disease severity/outcome. Feasibility studies focused on SARS-CoV-2 demonstrate the ability of PC-BAMS-IP™ to
perform simultaneous 2-dimensional antibody profiling of both the Fab traits (antigen binding function) and Fc
traits (immune effector function). The proposed 2-year Phase II project will expand on this progress, including: i)
design, synthesis and evaluation of 25 plug-and-play PC-MT encoded beads for SARS-CoV-2 antigen
immobilization and 25 PC-MT probes to simultaneously query a range of Fc traits of the bead-bound serum
antibodies; ii) initial validation of the PC-BAMS-IP™ assay using control and COVID-19 convalescent sera,
including comparison to Luminex® xMAP® technology, the existing gold-standard for 1-dimensional multiplex
antibody profiling; and iii) demonstrate that PC-BAMS-IP™ can distinguish severe and mild COVID-19. This work
will be facilitated by our continued collaboration with leading experts including Prof. Cathy Costello (BU, world-
renowned mass spectrometry expert), Dr. Jason Amsden (Duke University, mass spectrometric instrument
development), Prof. Rahm Gummuluru (BU, Vice Chair of Microbiology, a leading virologist), and Prof. Plamen
Ivanov (BU, Director, Keck Laboratory for Network Physiology, advanced statistical physics).
总结/摘要
迄今为止,仅在美国,SARS-CoV-2病毒就感染了3500万人,造成60多万人死亡。尽管
疫苗的初步成功,传染性越来越强的变种(例如Delta变种)的出现,
再加上疫苗犹豫和有效治疗不足,导致了持续和深化的
国家和世界范围的流行病危机。此外,很大一部分COVID-19患者(约35%),即使是那些
最初无症状的患者遭受长期衰弱效应(“长期COVID”)。最近的报告表明,
在急性炎症反应中具有潜在致死性的SARS-CoV-2诱导的特异性抗体的结构
2019冠状病毒病。研究还将抗体反应与长期COVID联系起来。此外,抗体的性质
对疫苗接种的反应与突破性感染相关。因此,快速执行高-
高分辨率,高度多重抗体反应谱可以提供一个重要的工具,最终导致更多的
对急性和长期疾病的有效诊断、免疫、疫苗和治疗。但目前的
抗体谱分析方法对体液库的了解非常有限。为了解决这一未满足的需求,
AmberGen建议在第二阶段进一步开发其质谱珠阵列技术,
免疫分析,称为PC-BAMS-IP™。这将为研究人员提供一个新的强大的工具,高-
与当前技术不同,其有利于2维多路复用。这是
使用带有病毒抗原的阵列式光可裂解质量标签(PC-MT)编码珠粒结合血清
抗体,沿着一系列PC-MT编码的探针,以同时测量珠结合的完整宽度。
抗体类型珠阵列的质谱成像(MSI)促进了对数千个
不同的PC-MT,从而揭示了抗体反应的全部复杂性和将其与
疾病严重程度/结局。针对SARS-CoV-2的可行性研究证明了PC-BAMS-IP™能够
同时进行Fab性状(抗原结合功能)和Fc
免疫效应功能(Immune Effect Function)拟议的两年期第二阶段项目将扩大这一进展,包括:
25个即插即用的SARS-CoV-2抗原PC-MT编码微球的设计、合成和评价
固定和25个PC-MT探针,以同时查询珠结合血清的一系列Fc特征
抗体; ii)使用对照和COVID-19恢复期血清对PC-BAMS-IP™测定进行初始验证,
包括与Luminex® xMAP®技术的比较,Luminex® xMAP®技术是现有的一维多路复用的黄金标准
抗体谱分析;和iii)证明PC-BAMS-IP™可以区分严重和轻度COVID-19。这项工作
将通过我们与包括Cathy Costello教授(BU,世界-
著名质谱专家),Jason Amsden博士(杜克大学,质谱仪器
拉姆Gummuluru教授(BU,微生物学副主席,领先的病毒学家)和Plamen教授
Ivanov(BU,Keck网络生理学实验室主任,高级统计物理学)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Lim其他文献
Mark Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Lim', 18)}}的其他基金
New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
- 批准号:
10481680 - 财政年份:2022
- 资助金额:
$ 97.86万 - 项目类别:
A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
- 批准号:
10603396 - 财政年份:2022
- 资助金额:
$ 97.86万 - 项目类别:
Photocleavable Mass-Tags for Spatial Multiomics of Alzheimer’s Brain Tissue
用于阿尔茨海默病脑组织空间多组学的光裂解质量标签
- 批准号:
10684250 - 财政年份:2022
- 资助金额:
$ 97.86万 - 项目类别:
A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
- 批准号:
10705203 - 财政年份:2022
- 资助金额:
$ 97.86万 - 项目类别:
Photocleavable Mass-Tags for Spatial Multiomics of Alzheimer’s Brain Tissue
用于阿尔茨海默病脑组织空间多组学的光裂解质量标签
- 批准号:
10483988 - 财政年份:2022
- 资助金额:
$ 97.86万 - 项目类别:
Photocleavage Technology for Blood-based Multi-Biomarker Alzheimer's Disease Assay
用于基于血液的多生物标志物阿尔茨海默病检测的光裂解技术
- 批准号:
10227129 - 财政年份:2020
- 资助金额:
$ 97.86万 - 项目类别:
Highly Multiplexed Nanoscale Mass Spectrometric Imaging of Cancer Tissues
癌症组织的高度多重纳米级质谱成像
- 批准号:
9908822 - 财政年份:2018
- 资助金额:
$ 97.86万 - 项目类别:
Highly Multiplexed Nanoscale Mass Spectrometric Imaging of Cancer Tissues
癌症组织的高度多重纳米级质谱成像
- 批准号:
10019483 - 财政年份:2018
- 资助金额:
$ 97.86万 - 项目类别:
Photocleavage Technology for Improved Serum-based Multi-Biomarker Cancer Assays
用于改进基于血清的多生物标志物癌症检测的光裂解技术
- 批准号:
9175644 - 财政年份:2016
- 资助金额:
$ 97.86万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 97.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 97.86万 - 项目类别:
Operating Grants














{{item.name}}会员




